Kalliola

Green Code

Second extended edition

Version 2023-08-31

Do not print this book.
The carbon footprint of the paper needed is about 600 gCO,eq.!

The first edition was published in 2022.
Copyright 2022-2023 Janne Kalliola / Exove — All rights reserved.
Cover photo: Niilo Isotalo [Unsplash

ISBN: 978-952-65306-2-8

1 www.sciencedirect.com/science/article/abs/pii/S0959652611004409

https://unsplash.com/photos/8Cpt0rYRt90
https://unsplash.com/@niiloi
https://unsplash.com/
https://www.sciencedirect.com/science/article/abs/pii/S0959652611004409

Janne Kalliola

Janne Kalliola is a founder of Exove,
where he currently serves as Chief
Growth Officer.

He is also the chairman of the board of
Code from Finland association, and has
launched the development of a carbon
neutrality label.

Janne has been coding since 1983, and
has published several commercial
software products both internationally
and in Finland.

He is a frequent speaker at open source
and green ICT events, and is passionate
about eco-efficiency and green coding.

kallio.la

linkedin.com/in/jannekalliola

twitter.com/plastic

https://kallio.la/
https://www.linkedin.com/in/jannekalliola/
https://twitter.com/plastic

Exove

Exove is a software company that combines analytical and technological
know-how with human insight. The company focuses on building digital
solutions that fight against digital frustration — defrustrating the digital.

Some of our most important clients include Neste, Sanoma, Loiste,
Rukakeskus, the University of Oulu, the University of Eastern Finland,
LUT University, JAMK University of Applied Science, and the cities of
Tampere and Jyviskyla.

exove.com

linkedin.com/company/exove

twitter.com/exove

Exove is part of the Finnish PunaMusta Media group, which employs
around 810 professionals from various fields. The group's revenue in 2022
was 133.5 million euros. PunaMusta Media is committed to setting Science
Based Targets (SBT) for driving sustainability and reducing climate impact.

https://exove.com/
https://www.linkedin.com/company/exove/
https://twitter.com/exove

Exove Sustainability Compass

We have created our own sustainability program — The Sustainability
Compass — which leads our actions both internally and externally.

We want to lead the way in our field and improve the sustainability of our
projects by creating and implementing guidelines for social and
environmental sustainability.

These four directions cover our impact over people and planet, with our
clients and internally.

1. Sustainable web design and development
2. Social sustainability
3. Environmental sustainability

4. Responsible company governance

https://www.exove.com/sustainability/

Contents

1 Foreword
2 Introduction
3 Why Should Code Be Green?

3.1 Handprint and Footprint

3.2 Trends Lead in the Wrong Direction

3.3 Efficient Devices Deceive Developers

3.4 Themes from the European Union
3.4.1 New Reporting Directive CSRD

3.5 IFRS and Emissions Disclosure

3.6 Responsibility of Developers

4 What We Know and What We Don't
5 The Energy Consumption Model of Modern Software

5.1 Data Centres and Cloud Services

5.2 Data Transmission Paths

5.3 End-User Device

5.4 Towards More Complex Models

5.5 Implementation, Testing, and Deployment

6 Raiders of the Lost Efficiency

6.1 Waste
6.1.1 Redundant Software
6.1.2 Improper Use

O 00 J o

13
14
16
17
18
20
23
26
28
30
33
34
38
39
40
41

Green Code

6.1.3 User Mistakes 42
6.1.4 Wrong Architecture 43
6.1.5 Wrong Data Models 44
6.1.6 Redundant Data 45
6.1.7 Non-optimised Data 46
6.1.8 Redundant Data Transfers 48
6.1.9 Algorithmic Inefficiency 48
6.1.10 Misguiding Users 49
6.1.11 Too Much Code 51
6.1.12 Inefficient Programming Language 52
6.1.13 Waste in Starting a Software 54
6.1.14 Redundant Redundancies 55

6.2 Minimisation 57
7 Solutions 60
7.1 Minimise Stored Data 60
7.2 Minimise Transferred Data 62
7.3 Reduce Code 64
7.4 Improve Application Efficiency 65
7.5 Use External Solutions 67
7.6 Other Solutions 68
8 Special Solutions 70
8.1 Artificial Intelligence 70
8.1.1 Energy Consumption 72
8.1.2 Recommendations 74
8.2 Blockchain and Cryptocurrencies 75
8.2.1 Energy Consumption of Blockchains 76
8.2.2 Energy Consumption of Cryptocurrencies 77

8.3 Internet of Things 80
8.3.1 Energy Consumption 81

8.4 Data 83

VI

Contents

8.4.1 Global Scale
9 Impact Assessment
9.1 Impact vs. Workload
9.2 Impact vs. User Experience
10 Carbon Neutrality
10.1 The Footprint of Implementation and Maintenance
10.2 The Application Footprint
10.3 Code from Finland Carbon Neutrality Label
11 Recommendations
11.1 For Software Developers
11.1.1 For Component Developers
11.2 For Designers
11.3 For Testers and Quality Assurance
11.4 For Software Companies
11.5 For Buyers
11.6 For Users
12 Summary
13 Thank Yous
14 Feedback

VII

84
90
91
92
95
97
97
98
100
100
102
103
104
105
106
107
110
113
116

1 Foreword

“We must change almost everything in our current societies.
The bigger your carbon foolprint - the bigger your moral duty.
The bigger your platform - the bigger your responsibility.
Adults keep saying: 'We owe it to the young people to give them hope.’
But [don't want your hope.

1 don't want you to be hopeful.

[want you to panic.
[want you to feel the fear [feel every day.
And then I want you to act.
[want you to act as you would in a crisis.
[want you to act as if our house is on fire.

Because it is.”

— Greta Thunberg, No One Is Too Small to Make a Difference

Climate change has been a major topic in political debate in recent years.
The Paris climate conference (COP21) in 2015, which set a target of
limiting global warming to below 1.5°C compared to pre-industrial levels,
sparked a conversation about what different industries can do to help
achieve this target. In the same year, the Global e-Sustainability
Initiative's #SMARTer2030 report outlined a path forward for the ICT
industry in addressing these challenges. This book focusing on green code
is a natural continuation of this conversation related to possibilities of

Foreword

different industries to address climate change. The subject is important
for many reasons, as you will find out when you read the book.

The author of the book, Janne Kalliola, approaches the subject from his
own experience as a young programmer in the 1980s. At the time, both
devices and programming environments were still in their early stages and
had limited memory and processing resources. This influenced the way
people wrote code. Although the industry has advanced significantly since
then, there are still many constraints that need to be taken into account in
writing efficient code, particularly in limited resources in embedded
systems and execution times in high-performance computing. So why
does Janne Kalliola emphasise the importance of green code and what
exactly is green coding?

In the book, green code refers to the energy consumption of software and
resulting carbon footprint and handprint. The perspective is challenging
for many reasons.

The energy required by software depends on many factors, as discussed in
the book. For example, the choice of algorithm, the programming
language and external libraries used, and the chosen development and
runtime environments all affect the efficiency of the executed code.
These decisions are interdependent, which complicates the task of
making optimal choices.

Measuring the energy consumption of software without the runtime
environment affecting the measurements is difficult. Seemingly identical
devices, such as smartphones, can have significant differences in energy
consumption depending on their implementation.

The energy efficiency of software is not a critical factor — with the
possible exception of embedded systems — such as, for example, the size
of the software was in the early days of computing. If a software used too
much memory, it was impossible or at least very difficult to run it on the
early-day platforms. When the goal of software efficiency is to affect
emissions and ultimately climate change, the chain of effects relating to

Green Code

both functionalities and the time frame becomes difficult to understand
and observe.

The book presents reasons for the inefficiency of current code and
solutions as well as recommendations for making code more efficient. In
my opinion, the book's main message is that as the constraints of the
programming environment have diminished, the quality of software has
deteriorated over time, leading to unnecessary energy consumption. To
quote the book's author, "In Finland, the focus is on writing code
efficiently instead of writing efficient code." The energy efficiency of
software can be improved as soon as energy efficiency becomes an
essential requirement for software.

This book by Janne Kalliola serves as a good discussion opener for this
topic, but it is important for the development of the field that the
discussion and development work continue after this.

In Lappeenranta on November 23rd, 2022
Professor Jari Porras
LUT University

2 Introduction

When I began my programming career with the Commodore VIC-20 I
received for Christmas, efficiency was a crucial factor from the start. The
computer had an eight-bit processor with a clock speed of one megahertz
and only five kilobytes of memory. If the code wasn't efficient, it wasn't
very practical either. Five kilobytes didn't allow for very complex
applications, and the Basic interpreter I used had only 3.5 kilobytes of
memory available.

For comparison, my phone has a 64-bit octa-core processor with a clock
speed of 2.9 GHz and eight gigabytes of memory. This means it has 23,200
times more processing power (not considering the extra 56 bits the
processor processes with each cycle or the pipeline of modern
processors) and 1.6 million times more memory. Of course, I can do more
with my phone than I could with the early, inexpensive computer.

Even when compared to my first Amiga 500, which had a graphical
operating system, all the necessary utility software, and many great games,
the ratios don't change much. The Amiga had a 7.16 Mhz 16-bit processor
and 512 kilobytes of main memory — my phone has 3,318 times more CPU
power and 16,384 times more memory.

Many people think that time must have gilded my memory. It is partly
true, as the ancient software was sometimes slow and had fewer features,
and the systems crashed more often. However, my beloved Amiga is still
in storage and a couple of years ago I showed my children what
information technology was like when I was their age. The session ended

Green Code

when the children left for their mobile phones, and I continued to play
Populous for a few hours. The gaming experience was similar to the
mobile games I've been playing, although Populous didn't force me to
watch ads or ask for money.

None of the current applications would be able to run on the old
hardware. They wouldn't fit in the memory, and they would be so slow
that the user would lose patience quickly. Yet, it was possible to develop
applications that achieved more or less the same things as current ones.
Where does this need for power really come from?

Of course, new software has features that need the power of current
devices. For example, Photoshop has many automatic correction tools
that work exceptionally well and save hours of manual work. Additionally,
file sizes have increased, requiring more memory and power to process
them.

A lot of current software is bloated only because there is no need to focus
on the efficiency of applications. Hardware is cheap, and the network has
plenty of transmission capacity, so there is no incentive to optimise. As
this situation has persisted for over a decade, much of the modern code
has never been optimised with care. It has always been fast enough.
Optimisation is also an expensive undertaking and doesn't necessarily pay
for itself in terms of investment. The savings may be very small.

The situation is now changing. Climate change and the energy crisis in
Europe, caused by Russia's aggressive war, are forcing us to reexamine all
energy consumption. Software must also change along with the rest of the
world. This will be a long, complicated, and certainly painful process, as
many of us are writing software in a way that will no longer be acceptable
in the future.

Green IT and green code have been widely discussed in Finland over the
past couple of years. I have been vocal on the topic, and together with the
rest of Code from Finland's board, I have prepared a carbon neutrality
label and criteria for the software industry. Several software companies
have started to discuss green coding. Finnish Information Society

Introduction

Development Centre Tieke has initiated the Green ICT project and
ecosystem to promote these efforts?.

But nobody has yet defined what green code or eco-efficient systems are.
Everyone looks at the issue from their own perspective, and everyone in
the conversation is partly still talking past each other. This is why I wrote
this short book and now, almost a year later, [added a section to it about
energy-intensive standalone solutions, such as artificial intelligences and
crypto contracts.

The purpose of the book is not to unequivocally define green code and
create a canon. Instead, I have tried to focus on describing patterns to
stimulate thinking and presenting various solutions. By using these,
anyone working on the matter can analyse their situation and identify the
changes they need to make to become more environmentally friendly.

Finland, as well as other countries, has a long tradition of demo coding
from the 90s, and our coders are well-educated. We have practical
expertise in writing neat and effective code. Let's use these old ways,
incorporate the solutions required by the modern world, and start writing
more efficient code. Line by line, application by application. Let's be part
of the solution, not part of the problem.

In Espoo on 31st August 2023, while listening to Roisin Murphy's
Overpowered.

Janne Kalliola

2 tieke.fi/en/projects/green-ict-project/

https://tieke.fi/en/projects/green-ict-project/

3 Why Should Code Be Green?

The importance of digitalisation for improving the efficiency of
operations is undeniable, and it is difficult to imagine today's society
without ubiquitous software. The impact of software is significant and is
rapidly increasing also in terms of energy consumption.

To combat climate change, all viable avenues must be explored, and the
ICT industry must also play a role. For the past twenty years, software has
been developed without significant concern for efficiency, as the speed of
devices has increased simultaneously. Additionally, more power can easily
be obtained from the cloud with a few clicks or even automatically.
Scaling with hardware has been cheaper than optimising software.

Processing, presenting, and transferring information consumes energy. At
the moment, there is not enough clean energy available globally, and
renewable energy sources cause large fluctuations in energy availability
and price. Therefore, saving energy makes sense.

Although many data centres operate with renewable or even
carbon-neutral energy, this does not change the overall situation. Dirty
energy is still produced, it is just used elsewhere. Reducing overall energy
consumption and shifting consumption to days when there is a lot of
renewable energy available are crucial actions for our planet.

Why Should Code Be Green?

3.1 Handprint and Footprint

When discussing the impact of products, services, or processes on the
environment, the term carbon footprint is often used. This refers to the
amount of emissions produced by the product or service, i.e. how much
greenhouse gases are produced during the life cycle of said product or
service.

The carbon footprint is measured in carbon dioxide equivalent, which is a
measure of all greenhouse gases. It can be used to calculate the impact of
various greenhouse gases, such as carbon dioxide or methane, on climate
change. Different gases behave differently in the atmosphere, so
coefficients have been calculated to allow them to be evaluated on a
common scale.

Different forms of energy production have their own carbon footprint,
which depends on the way the energy is produced and all the activities
required to produce or prepare the production of the energy. Renewable
energy is not carbon-neutral in itself, as wind turbines, for example, need
to be built, installed, and maintained.

Energy consumption, particularly its growth, is a problem because dirty
energy is still being produced, and the production of renewable energy is
not sufficient to meet the increasing global energy consumption. Many IT
sector companies use renewable or compensated carbon-neutral energy,
which reduces the calculated emissions of these companies and
encourages the building of more renewable energy capacity. However,
reducing consumption is even more important because increased
consumption still leads to the use of fossil fuels.

On the other hand, software can also reduce emissions by streamlining or
optimising other operations. This is called the carbon handprint. As part
of the increase in productivity, the I'T industry has eliminated unnecessary
intermediate steps in processes or for example, minimised the use of
paper and printing. This handprint has a significant positive impact on the
planet and should not be underestimated. However, its existence does not
justify the inefficiency of software and growing energy consumption. The

Green Code

same handprint can be achieved efficiently or inefficiently, so it makes
sense for the world to choose an efficient implementation.

3.2 Trends Lead in the Wrong Direction

There are currently several trends in the IT sector that unfortunately
move in the wrong direction when it comes to the climate:

Growth of data — There has been an exponential growth in the
amount of data that is produced, processed, and stored. This data
generally accumulates, and old data is often not deleted when new
data arrives. Instead, it is stored for years or even decades.

Measuring software development — In my own experience, the
effectiveness of software development is typically evaluated based
on the number of features developed within a specific time frame,
regardless of the quality or efficiency of the code. The only time
the efficiency of the code becomes a significant factor is when it
has a noticeable impact on the user experience.

Lust for new devices — The IT industry is known for its focus on
creating more powerful devices, even when the existing technology
is enough to meet our needs. This focus on technical specifications
can make older devices obsolete quickly, particularly when they
are no longer able to receive software security updates or support
the increased performance requirements of new applications. As a
result, consumers are often forced to upgrade their devices
frequently in order to keep up with the latest technology.

Transition to mobile networks — more and more information is
transmitted wirelessly and more daily tasks are performed on
mobile devices. It is very convenient, but wireless connectivity is
significantly less energy-efficient than using a wired connection.
On the other hand, mobile phones are more energy-efficient than
computers for data processing, Therefore, using a mobile phone
instead of a computer can be a good idea if it allows you to avoid
using a computer altogether.

Why Should Code Be Green?

e Advertisement-based funding — most mobile apps are free to
use, and their development is funded by advertising, in-app
purchases, or a combination of the two. However, a study® by Aalto
University in Finland found that the process of conducting
automated auctions between advertisers for each ad slot a user
sees can be energy intensive, with ad networks consuming an
estimated 10% of the total electricity consumed by the entire
internet.

e Growth of artificial intelligence usage — over the past year,
artificial intelligence has evolved from an abstract concept into an
everyday tool. New Al-based or machine learning-based solutions
emerge daily, often driven by massive amounts of data and utilising
significant computational capacity. We still do not know whether
the benefits of using artificial intelligence — the enhancement of
processes and practices — will outweigh the consumption
generated by its use. Or if it will result in yet another vain way of
consuming large amounts of energy.

As the amount of software and data continuously grows, faster devices
and networks are needed to keep up. This leads to a cycle in which less
efficient code or larger amounts of data are used, requiring even faster
devices and networks. We should break this cycle.

For example, websites have grown year by year. In 2022, Aalto University
conducted a survey* of popular Finnish websites. The sample set included
both private companies and public administration, totaling around a
thousand different sites. The survey found that websites are produced
with varying levels of skill. Some of the sites are optimised well and are
small in size, while others cause a vast amount of data to be transferred
over the network.

3 www.sciencedirect.com/science/article/pii/S0195925517303505

4 aaltodoc.aalto.fi/bitstream/handle/123456789/114010/isbn9789526407395.pdf
(available in Finnish only)

10

https://aaltodoc.aalto.fi/bitstream/handle/123456789/114010/isbn9789526407395.pdf
https://www.sciencedirect.com/science/article/pii/S0195925517303505

Green Code

The HTTP Archive® has recorded changes to websites in its annual
publication, Web Almanac. Statistics show that the size of websites has
tripled in the last ten years®. In the past, mobile websites were generally
smaller than their desktop counterparts, but today, they are just as large
due to the fact that separate mobile versions are no longer implemented.
Instead, the appearance of a website changes responsively depending on
the capabilities of the user's device.

2500

2000 M

1500

1000

Kilobytes

500

]

(3 Sy SR S e S Ry
PR S S S S S

AR o B cah oah e el ol B el el a® R a® D
DT, SR S IS S PG SN S S S S SR SR S S Y

a0 I ik
iy platd W By '1&2‘10

- computer — mobile

Figure 1. The growth of website size over the years. Source: Web Almanac.

Additionally, consumers' demands for websites and services have also
increased. As screen resolutions improve and transmission networks
become faster, consumers have come to expect content that looks good
on new devices.

According to the aforementioned study by Aalto University, over 40% of
the data on web pages was from third-party resources in all
measurements. In a sample of a thousand pages, the data was distributed
as follows:

> httparchive.org
¢ almanac.httparchive.org/en/2021/page-weight

11

https://almanac.httparchive.org/en/2021/page-weight
https://httparchive.org/

Why Should Code Be Green?

Type of file Share

Description

Images 56%

JavaScript 22%
Media files 6,3%
Fonts 4.7%
XHR 4,5%
CSS 2,7%
HTML 2,0%
Other files 1,4%

Images used on the site, for example,
photos, background images, and icons.

Code to implement features, integrations,
and user tracking on the site.

Audio and video files on the site.

Fonts used on the site. Icons may be also
provided as a font.

Files retrieved by JavaScript code on the
site. The files may be images, videos, text,
or documents for certain applications.

The visual layout building instructions for
the pages of the site.

The structure and textual content of pages
of the site.

Files that could not be categorised into
aforementioned main categories.

The numbers in the table come from the "scrolled computer” category,
where pages of the website were viewed on a computer and fully scrolled
through. Some resources are only loaded when they become visible (lazy
loading). As a result, scrolling can change the relative amounts of data for

different file types.

It is worth noting that the text content and structure of a page make up
only 1/50 of the page's data. Further, a significant portion of this is used to
describe the structure and reference other files. On modern websites, new
text content can also be loaded as the user scrolls the site, in which case

12

Green Code

these loaded contents are counted under the XHR type, even if they are
HTML.

Although images and media are important on a website, most web pages
are still primarily text-based and visitors come for the textual content.
The ratio of utility is poor.

Over a fifth of a website's data comes from various script files, which
make the site more user-friendly and, on the other hand, report the user's
activities to analytics and advertising systems.

3.3 Efficient Devices Deceive Developers

Software developers often have very powerful laptops that are only a few
years old. On average, business equipment is renewed every three years
when the leasing period ends. This may mislead developers into thinking
that all devices have this level of power, so they may not realise to
optimise their applications adequately. As a result, people using older
devices may experience slow performance or may not be able to use the
application at all.

Additionally, creating backward-compatible software is more expensive
than leaving older devices unsupported. All of these factors can force
people to replace their devices, leading to increased emissions from
manufacturing and logistics.

However, devices and networks have also become more energy intensive.
An increase in processing power does not necessarily require an increase
in electricity consumption due to technological progress. On the other
hand, devices could be significantly more energy efficient with current
technology if software had lower processing requirements.

According to studies’ by Sitra, electronic waste is the fastest-growing type
of waste, with a 7% annual growth rate, and only 17% of it is properly

7 https://[www.sitra.fi/en/articles/five-important-questions-about-the-

environmental-impacts-of-increased-digital-use/

13

https://www.sitra.fi/en/articles/five-important-questions-about-the-environmental-impacts-of-increased-digital-use/
https://www.sitra.fi/en/articles/five-important-questions-about-the-environmental-impacts-of-increased-digital-use/

Why Should Code Be Green?

treated each year. It should also be noted that recycling itself is a very
energy-intensive process, as it involves melting metals, for example. While
recycline an obsolete or unnecessary device is better than not recycling it,
the best option is to try to extend the life of the device.

To give a sense of the scale of the problem, the same Sitra article
calculated that 5,000 Eiffel Towers could have been built with the
electronic waste produced in 2019.

3.4 Themes from the European Union

The European Union is one of the world's most advanced communities in
matters of responsibility. The Union's recommendations for building more
energy-efficient systems have been described in the Official Journal of the
European Union® published on November 25, 2021. The aim of the
document is fo support all organisations in the telecommunications and
1ICT services sector to focus on relevant environmental aspects, both direct
and indirect, and to find information on best environmental management
practices, as well as appropriale sector-specific environmental
performance indicators to measure their environmental performance, and
benchmarks of excellence — direct quote — and it gives a good picture of
the development trends in the EU region.

The interesting topics for this booklet begin with section 3.72.6 Minimising
data traffic demand through green sofiware. The described best practice
includes the following actions:

e Develop more energy-efficient software that minimises power
consumption of ICT equipment.

e Design demand-adaptive software according to end-user needs, in
order to avoid energy overconsumption and to limit the
obsolescence of existing devices.

8 eur-lex.europa.eu/legal-content/ EN/TXT/PDF/?uri=CELEX:32021D2054 &
from=EN

14

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021D2054&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021D2054&from=EN

Green Code

e Monitor the energy consumption of software.

e Assess environmental impacts of software through life-cycle
analysis at development phase and performance measurement at
usage phase.

e Refactor existing software to improve its energy efficiency.

Similarly, section 3.2.2 Define and implement a data management and
storage policy is interesting. It describes the best course of action:

e Minimise the amount of stored data.
e Maximise the usage of shared platforms.

e Consolidate existing services and decommission unnecessary
hardware.

The document also discusses extensively improving the energy efficiency
of data centres and data transmission networks, as well as optimising the
energy usage of users' devices.

In addition to the best operating method, each chapter describes a set of
performance indicators and benchmarks of excellence, which can be used
to compare your own company with highly advanced organisations.
Below are a few selections from the metrics:

e Amount of data transferred in relation to software utilisation
(bit/web page view or bit/min of mobile application use)

e Share of newly acquired software for which the energy
performance has been used as a selection criterion within
procurement (%)

e Share of newly developed software for which the energy
performance has been used as a development criterion (%)

e Share of existing software which has been refactored or which has
undergone code reviews towards higher energy efficiency (%)

15

Why Should Code Be Green?

e Share of software developers (staff) trained on energy-efficient
software (%)

It is not yet difficult to reach the benchmarks of excellence. The following
benchmarks are mentioned for metrics related to software development:

e All staff (software developers) trained on energy-efficient software

e At least one project for minimising data traffic demand through
green software was implemented during the year

3.4.1 New Reporting Directive CSRD

The European Union is also updating its own legislation on corporate
sustainability reporting.” The new directive, the Corporate Sustainability
Reporting Directive (CSRD), is currently being developed and will replace
the current Non-Financial Reporting Directive (NFRD)™.

The goal is to fix the shortcomings of the current rules and harmonise
reporting to enable comparability. The directive is being developed in
response to the need to assess a company's environmental and social
impacts and thus measure the sustainability of its business operations.
Sustainability of business is reported in a separate sustainability report
based on the directive and European sustainability reporting standards.
For example, a company's greenhouse gas emissions and their
development are disclosed annually.

Under the proposal, large and publicly listed companies will be required
to report on sustainability themes in machine-readable format as part of
their annual report. The European Commission will subsequently define
specific sectors where reporting obligations will also apply to small and

’ wWww. consﬂlurn europa. eu/en/Dress/Dress releases/Z022/02/24/00uncﬂ—

reporting-directive-nfrd

16

https://greenly.earth/en-us/blog/company-guide/what-is-the-non-financial-reporting-directive-nfrd
https://greenly.earth/en-us/blog/company-guide/what-is-the-non-financial-reporting-directive-nfrd
https://www.consilium.europa.eu/en/press/press-releases/2022/02/24/council-adopts-position-on-the-corporate-sustainability-reporting-directive-csrd/
https://www.consilium.europa.eu/en/press/press-releases/2022/02/24/council-adopts-position-on-the-corporate-sustainability-reporting-directive-csrd/

Green Code

medium-sized enterprises. The accuracy of the reported information will
be audited by the company's auditor.

There will apparently be 13 reporting standards, which will be detailed.
You can learn more about the standards and the process on the website of
the European Financial Reporting Advisory Group (EFRAG)."

3.5 IFRS and Emissions Disclosure

In October 2022, the International Sustainability Standards Board (ISSB)
unanimously decided to require companies following IFRS to report their
carbon footprint, including emissions under all three scopes of carbon
calculation™.

International Financial Reporting Standards (IFRS) are standards for
publishing financial statement information. It has been in use in all EU
countries since 2005 and is required in a total of 167 regions worldwide,
including practically all developed countries."

In the future, companies reporting in accordance with IFRS will also have
to disclose their own emissions as part of their financial statements. Since
all three scopes are included, the energy consumption and emissions of I'T
systems will need to be reported as well.

The requirement is not being enforced immediately, and the exact
schedule is currently unknown. It is likely that a transition period of a few
years will be granted to allow companies to make the required changes.
Nonetheless, especially large companies should start monitoring
emissions now and establish control over the energy consumption and
emissions of their IT systems piece by piece.

1 www.efrag.org/lab3

12

www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-confirms-
scope-3-ghg-emissions-disclosure-requirements-with-strong-application-
support-among-kevy-decisions/

3 en.wikipedia.org/wiki/International _Financial Reporting_Standards

17

https://en.wikipedia.org/wiki/International_Financial_Reporting_Standards
https://www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-confirms-scope-3-ghg-emissions-disclosure-requirements-with-strong-application-support-among-key-decisions/
https://www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-confirms-scope-3-ghg-emissions-disclosure-requirements-with-strong-application-support-among-key-decisions/
https://www.ifrs.org/news-and-events/news/2022/10/issb-unanimously-confirms-scope-3-ghg-emissions-disclosure-requirements-with-strong-application-support-among-key-decisions/
https://www.efrag.org/lab3

Why Should Code Be Green?

3.6 Responsibility of Developers

The efficiency of the implementation of an application is primarily the
responsibility of software architects and developers. The requirements for
the application, which usually arise from business needs, largely
determine the efficiency or inefficiency of the application -
unfortunately, typically inefficiency.

Only software development professionals have the knowledge and ability
to create applications, efficient or inefficient. Unfortunately, some in the
industry still believe that software efficiency is not important, perhaps
because a software's carbon handprint is large, or because they think
other matters are more important.

Energy efficiency is currently not a requirement or selection criteria in
the procurement of software, but some organisations are starting to
recognise its importance. It is likely that we will see more requirements
and outright demands for energy-efficient solutions in the near future. I
hope that this book will contribute to the change in procurement criteria
to include energy efficiency.

I've had discussions, sometimes fiery, about whether it makes more sense
for an application developer to spend time optimising the application or
to come to work by bike instead of driving a car. However, these are not
mutually exclusive, as even a bike-riding developer can optimise their
application, and smart people choose both.

As Spider-Man's uncle Ben Parker has stated in his various incarnations:
"with great power comes great responsibility." ™

Summarised

4 en.wikipedia.org/wiki/With_great_power_comes_great_responsibility

18

https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility

Green Code

Digitisation is essential for overall efficiency, but the growing
energy consumption of software requires attention. The ICT
industry must address its own energy efficiency to combat
climate change.

A critical challenge is the energy consumption of the ICT sector,
comprising the energy used by software, devices, and data
transmission. Fluctuations and shortages in renewable energy
availability necessitate measures to save energy within the ICT
sector as well.

Trends such as data growth, inefficient software, continuous
device upgrades, wireless connections, and ad-based financing
of services undermine energy efficiency and increase
environmental impacts.

Energy-efficient software development is crucial to curb the
performance requirements of devices and networks. Developers
play a key role in optimising applications to restrain energy
consumption.

The European Union focuses on sustainability through
regulations like CSRD, and similarly, the IFRS standard will
mandate carbon reporting. Calculating software carbon
footprints will become practically mandatory due to these
regulations.

19

4 What We Know and What We
Don't

The energy consumption of software is quite simple, in principle. Data
processing requires clock cycles from the processor, and transferring data
for processing from memory, network, or storage requires both processor
and IO power.

However, the complexity and layering of software, as well as the lack of
measurement points, make it difficult to calculate the actual energy
consumption. In a single device, there are easily hundreds of processes
running and consuming energy, each with its own architecture,
algorithms, and data. While the energy used by the device can be
measured by the amount of electricity it consumes, the distribution
among different components and processes stays unclear and difficult to
measure.

In addition, complexity increases when there are multiple devices in the
environment, such as an end-user device, a proxy server, a database
server, various cache servers, and network devices, each with its own
specific software and features. On top of this, there are different
abstraction layers, such as virtual machines, containers, and microservice
architecture-based implementations.

Measurement data originating from multiple sources is typically also
inconsistent, rendering the aggregation of figures unreliable. Inconsistency
can arise from different methods of measurement, interpretations of
measurements, or measurements encompassing different entities —

20

Green Code

meaning that certain aspects are included in measurement in some cases
and excluded in others.

Because of this complexity, accurate and reliable energy consumption
measurements are difficult or even impossible to achieve. Some systems
may be services offered by third parties, and their energy consumption
may be vendor's internal information that is not shared.

Traditionally, processes are improved using measurement data to identify
problems. Energy efficiency and greenness in software can and should be
improved, even if measurements are lacking or inadequate. We don't have
time to wait for improvements in measurement methods; we need to
reduce emissions now.

This book provides different mental models that can be used to approach
the problem from various angles and make genuine improvements. No
single solution will solve every problem, but when application developers
have a toolkit for thinking about energy efficiency, improvements can still
be made. It is essential to set aside enough time to use this toolkit, which
requires prioritising energy efficiency over other matters.

The measurement data will improve in the coming years. Information on
the energy consumption or carbon footprint of cloud services can already
be obtained from the service administration interface. Processor
manufacturers also offer test beds for measuring power consumption at
the chip level.

There is still a certain stigma around publishing energy consumption data
— it is considered potentially detrimental to the company's reputation.
The more organisations publish their measurement data, the easier it will
be to compare the energy efficiency of one's own solutions with similar
ones. Since we are not there yet, this book focuses more on change than
on measurability.

That said, if you have the opportunity to measure energy consumption
accurately enough, it is definitely worth using that opportunity and
incorporating the metrics into your own production process. This way,
you can ensure that a new version of the software does not compromise

21

Why Should Code Be Green?

energy efficiency. If measurement is not possible, a similar assessment can
be made, for example, by monitoring the response times of the service: an
extended response time indicates an increase in power demand.

[also strongly recommend publishing as much relevant measurement data
as possible, as our understanding of efficiency or its absence is very
incomplete due to lack of information.

Summarised

T The energy consumption of software is practically based on the
consumption caused by data processing and transfer. However,
the complexity and layering of software make precise
measurement challenging.

2 The complexity of measurement is compounded when multiple
devices and different abstraction levels are involved. These
factors also give rise to commensurability challenges.

4 Despite measurement challenges, improving software energy
efficiency is crucial for emissions reduction. This book provides
various mental frameworks for addressing this issue.

4 Public measurement data is scarce. Therefore, it is important to
aim for publishing one's own measurements to enhance
transparency in the field of energy consumption.

5 Accurate measurement of energy consumption should be
integrated into the production process whenever possible. If not
feasible, alternative approaches such as monitoring response
times, can help assess energy efficiency.

22

5 The Energy Consumption Model of
Modern Software

Most of the currently developed software is based on the client-server
model, where there is a server on the network that provides various
services to an application running on the end-user device. For example,
almost all services that are used in a web browser are of this type, as are
most mobile applications and an increasing number of desktop
applications, where the typical use case is to verify the validity of licences
or subscriptions.

The details may vary significantly between different software, but for the
purposes of calculating energy consumption, the model can be condensed
into three parts:

1. The energy consumption of software running in the data
centre. This is the location of the actual application server, which
contains the centralised business logic of the software and
maintains a connection with the application on the end-user
device. In addition, there are storage and database servers, as well
as possible auxiliary servers, such as authentication and backup
solutions.

In a cloud environment, the boundaries of the application can be
less clear, as the code is relying on the cloud environment's
ready-made services, which also form an essential part of the
software's runtime environment.

23

The Energy Consumption Model of Modern Software

24

The internal data transfer in the server centre is calculated in the
same moment.

Data transfer between the data centre and the end-user
device. The energy consumed in data transfer is easiest to think of
as linear in relation to the amount of data. The content of the
transferred data can vary greatly between different applications,
but the energy consumption is the same byte by byte as the data
travels the same transfer path. On the other hand, there are
significant power differences between the transfer paths.

Processing the data on the server, such as preparing it for transfer,
packing, encrypting, and decrypting, is included in the server
centre's energy consumption, and similarly, the same operations on
the end-user device are included in the end-user device's
consumption.

The application used by the user on the end-user device. The
software running on the end-user device can be very simple and
static, a web page, or a complex and intricate application installed
on the device.

For the purposes of calculating energy consumption, it is
essentially the same whether the device is running native software
specifically written for that purpose or whether the same
functionality is implemented as a web application that runs in a
browser. In the latter, the energy consumed by the browser is
calculated into the consumption of the application.

Green Code

i

(¢

== C -

_ ——— ='

wlje— = =
End-user Devices Network Servers

Figure 2. The three main areas of modern sofiware energy consumption.

All IT systems are designed to process and present data to users in an
understandable format. Processing can take place in both the data centre
and the end-user device, and the location of the processing can
significantly affect the amount of data that needs to be transferred and the
number of calculations that need to be performed.

Therefore, when designing the architecture of an application, it is
important to strive for a balanced solution that minimises both the
processing and the transfer, taking into account the specific features of
each subsystem in terms of energy consumption. This may sound simple,
but in practice, the problem is not trivial. In addition, the planned and
actual implementation might be different — as the former Soviet premier
Viktor Chernomyrdin famously said, "We wanted the best, but it turned
out like always."

It is especially dangerous to focus on optimising only one area at the
expense of the other two, unless there is a very compelling reason, such
as a narrow communication bandwidth or significant costs, for example,
when communicating with space probes. It may easily happen that more
power is needed elsewhere, or the user experience deteriorates and users
abandon the service.

25

The Energy Consumption Model of Modern Software

Let's now examine each of these three areas in more detail, as well as
some of the more complex implementations that complicate this simple
and clear picture. It is important to keep in mind that these models are all
rough generalisations, and the specific features of each piece of software
must be taken into account when optimising it. However, these models
can help open a discussion and deepen the understanding of the specific
characteristics of one's own solutions step by step.

5.1 Data Centres and Cloud Services

The data centre typically hosts the application's centralised functionalities
and data storage. The application can be a simple piece of software that
runs on a single device, or a complex solution spread across many servers.
In terms of energy consumption, every combination is treated the same
way: the amount of energy used by the application is the sum of the
energy consumed by the servers and the data transfer between them.
Some of the servers may be shared among several applications, which
complicates the calculation.

In this book, the term "data centre" refers to both physical data centres
and servers located in the cloud, which in the end are physically located
in one or more data centres. The specific features of the cloud will be
highlighted when they differ significantly from traditional server models in
terms of energy efficiency.

The organisation developing the application typically does not own the
server hardware, but instead rents it from the data centre. Large
companies may own their own data centres, but the calculation of energy
consumption and emissions remains the same. The production, logistics,
maintenance, and decommissioning of equipment generate emissions in
addition to the energy consumed by the equipment.

To save energy and reduce emissions, it is essential to minimise the
number of servers and to maximise the load on each individual server as
close to the ideal level as possible. However, overloading the server does

26

Green Code

not make sense because it leads to queuing of requests, longer processing
times, and also shortens the life of the server.

It is also worth noting that distributing the service across several physical
servers increases the need for other hardware, too. For example, load
balancers or shared disk packs are needed, and they consume their share
of energy. Decentralisation also complicates the application, as all data
processing no longer happens in a shared memory space, and the
application must be designed to ensure data consistency.

Modern environments are virtualised or containerised — a private
environment is created, configured, and adapted solely for the
application. Several such virtual machines or containers are installed on a
single physical device, whose capacity is shared among several
applications while keeping the environments separate.

These intermediate layers consume a small portion of the capacity of the
physical hardware. On the other hand, they enable the physical devices to
be used as efficiently as possible and can also offer automatic load
balancing. According to a study, container technology does not
significantly reduce the efficiency of processing or accessing memory.
There is more overhead in data transmission, as virtualisation and
containerisation increase processor usage to move data through several
layers."

Similarly, the application can be built as a set of microservices: each
functionality is a separate service in a separate environment, and the
services communicate with each other by using network connections.
The advantage of such a solution is scalability — in principle, each
microservice can run on any server in the data centre — and the simplicity
of individual services. The challenge, on the other hand, is the
fragmentation of the software architecture into several smaller parts that
also blurs the energy consumption. Microservices allow data centre and
cloud service providers to allocate resources in an optimal way, which in
turn reduces overall energy consumption.

5 jeeexplore.ieee.org/document/7095802

27

https://ieeexplore.ieee.org/document/7095802

The Energy Consumption Model of Modern Software

5.2 Data Transmission Paths

Data transfer between the data centre and the end-user device is not
generally under the control of application developers, at least not all the
way through. The data centre is typically connected to the Internet's core
network, and that connection is on practical terms already optimised for
energy efficiency due to the large amount of transferred data. The choice
of data centre, of course, affects the energy consumption of the
connection, but a conscious choice can only be made if the consumption
information is publicly available. In addition, content delivery network
(CDN) solutions can shorten the data transmission path from the
consumer to the online content.

The application user, on the other hand, has a great deal of control over
the transmission path. They use the service in the location of their choice
and with the network connection available at that location. The energy
efficiency of the transmission path can be analysed through two essential
parameters:

1. Physical implementation of the transmission path. Various
ways of transferring information differ significantly in their energy
consumption per gigabyte. Optical fibre is the most energy-
efficient type of network to transfer information, and thus it is used
in backbone networks and, for some lucky ones, also as the last
link to the home or office. At the other end of the efficiency
spectrum is mobile data transmission, which is hundreds of times
less efficient than optical fibre.

According to a study'® conducted in Finland in 2020, mobile data
transmission consumed energy at a rate of about 220 Wh/Gb".

16 joonasnuutinen.fi/wp-conten 1 1 inen2021 A-

Comparison-of-the-Energy-Consumption-of-Broadband-Data-Transfer-
Technologies.pdf

7" ficom.fi/ajankohtaista/uutiset/digiratkaisuilla-energiatehokkuuteen-
mutta-ei-ilman-sahkoa/ (available in Finnish only)

28

https://ficom.fi/ajankohtaista/uutiset/digiratkaisuilla-energiatehokkuuteen-mutta-ei-ilman-sahkoa/
https://ficom.fi/ajankohtaista/uutiset/digiratkaisuilla-energiatehokkuuteen-mutta-ei-ilman-sahkoa/
https://joonasnuutinen.fi/wp-content/uploads/2022/01/Nuutinen2021_A-Comparison-of-the-Energy-Consumption-of-Broadband-Data-Transfer-Technologies.pdf
https://joonasnuutinen.fi/wp-content/uploads/2022/01/Nuutinen2021_A-Comparison-of-the-Energy-Consumption-of-Broadband-Data-Transfer-Technologies.pdf
https://joonasnuutinen.fi/wp-content/uploads/2022/01/Nuutinen2021_A-Comparison-of-the-Energy-Consumption-of-Broadband-Data-Transfer-Technologies.pdf

Green Code

Another study found that the least efficient fixed network in the
study consumed 0.25 Wh/Gb, while the most efficient consumed
0.02 Wh/Gb'8, making them a thousand or even ten thousand times
more efficient than mobile networks.

2. The distance of transmitted information. The longer the
distance the data must travel from the data centre to the end-user
device, the more energy the transmission consumes — regardless of
the transmission path used. Intercontinental transmission networks
are fundamentally very efficient. Transferring data from the United
States to Europe may consume a fraction of the energy compared
to the last kilometre from the base station to the mobile phone.

Also the carbon dioxide emissions of the transmission network energy
consumption must be considered. The emissions vary depending on the
electricity production method and possible compensations, but typically
this information is not publicly available. A good estimate can be obtained
from country-specific average estimates; for example, during the six
months preceding writing this text, February—July 2023, the electricity
consumed in Finland produces 34 gCO2/kWh emissions according to
Fingrid®. Correspondingly, Germany's average for 2022 is 385
gCO2/kWh?°, meaning the emissions are more than eleven times higher
than in Finland.

The transmission routes of global services run through different countries,
making it practically impossible to calculate the exact energy
consumption of data transmission. In addition, in modern applications and
especially in web services, the end-user device typically connects to
several background systems — for example, analytics, videos, or chat —
and each of them uses different transmission routes.

18 www.prysmiangroup.com/staticres/energy-consumption-whitepaper/26/

index.html

19

www.fingrid.fi/en/electricity-market-information/real-time-co2-emissions-

estimate/

20 www.statista.com/statistics/1290224/carbon-intensity-power-sector-germany/

29

https://www.statista.com/statistics/1290224/carbon-intensity-power-sector-germany/
https://www.fingrid.fi/en/electricity-market-information/real-time-co2-emissions-estimate/
https://www.fingrid.fi/en/electricity-market-information/real-time-co2-emissions-estimate/
https://www.prysmiangroup.com/staticres/energy-consumption-whitepaper/26/index.html
https://www.prysmiangroup.com/staticres/energy-consumption-whitepaper/26/index.html

The Energy Consumption Model of Modern Software

Likewise, a server software may be connected to other back-end systems
over the network. In these situations, it can safely be assumed that the
data is transmitted only on the backbone network.

It is therefore impossible to determine the specific kind of transmission
path to the end-user from the data centre. In principle, the type of
terminal device can be used to determine the transmission path. But on
the other hand, a desktop computer can also be online via mobile
broadband or, similarly, a mobile phone can be connected to a wireless
local area network and from there to a fibre optic network. A mobile
application can determine the quality of the connection used from the
operating system of the mobile phone. Similarly, some browsers offer a
separate interface for finding this information.

Common to all transmission paths, however, is the effect of the amount of
data transferred on energy consumption: the more the application
transfers data between the data centre and the terminal device, the more
energy is consumed.

In addition, as the amount of data transferred increases, new transfer
capacity gets built, which causes emissions. Minimising the transferred
data both reduces the energy used by the transmission path and slows
down the need to grow the network's transmission capacity.

5.3 End-User Device

Part of the software runs on the end-user's device, either as an
independent application or within another application. Typical examples
of the first are applications installed on computers and mobile phones,
while the second model is represented by web pages and services. It is
difficult to draw a clear line between these, as installed applications may
display web content as part of their own user interface. While it is
challenging to draw the line, it is essential to optimise all parts used and fit
them to their purpose.

The data processing of the application can be done both in the data
centre and in the end-user device. The location of the processing affects,

30

Green Code

sometimes significantly, the amount of data transferred. The chosen
architecture should aim to minimise the total energy consumption of all
components. There is no universally valid model for this, because the
operating models of the applications differ greatly from one another.

In addition, there are significant differences in the energy consumption of
devices. For example, mobile phones are optimised to be energy efficient,
because their size and weight limit the use of larger batteries and users
want to use the device a whole day with a single charge.

Similar optimisation is not necessary for devices connected to a fixed
electrical network, such as a 65" flat-screen TV. Of course, the energy
classifications of the EU and other similar bodies aim to make devices as
energy efficient as possible, but the differences between devices are still
significant. It is worth noting that energy classifications have been made
for household appliances and televisions?, but there are no corresponding
classifications for information technology devices yet.

For example, watching a 4K video on a large TV and streaming it via a
mobile network is a poor solution in terms of energy consumption
compared to, for example, watching the same video on a mobile phone or
laptop that is connected to a wireless LAN with a fixed connection to the
Internet. In the latter case, the video resolution would probably be scaled
down automatically due to lower screen resolution — a cleverly
implemented application would take this into account, saving both energy
and data transfer costs.

The transfer of the application to the terminal should also be considered.
If the application is installed on the device, it is transferred only once, and
then possibly additional information is transferred from the network only
when the application is started for the first time after installation. Each
subsequent use of the application requires less data transfer.

If, on the other hand, the application is a web page, it may be transferred
to the device again every time it is used. Browsers use caches to store

2l ec.europa.eu/energy/eepf-labels/label-type/televisions_en

31

https://ec.europa.eu/energy/eepf-labels/label-type/televisions_en

The Energy Consumption Model of Modern Software

downloaded files on the device to reduce network calls, but the size of the
cache is not infinite and at some point the browser cleans out less used
files. Similarly, a mobile phone user or the phone itself will automatically
delete infrequently used apps to free up storage space, and some of them
will be downloaded back when needed again.

Mobile and desktop applications can manage their own caches, allowing
developers to maintain precise control over what is transferred. If there is
more information to be stored than space can be allocated for the cache,
developers should consider a reasonable cache strategy to make space for
new files as needed. Once again, the strategy is determined by the
application's architecture and usage patterns. On web pages, it is possible
to store information in the local storage provided by the browser, but it is
managed not only by the application but also by the browser.

The displays of devices are also significant energy consumers. In practice,
the display of a mobile phone consumes the most energy in scenarios
where it is turned on. Only in the most networking-intensive operations is
the display not the biggest consumer.?? The energy consumption of
displays is fairly directly dependent on brightness settings. The ratio of
bright and dark pixels also affects consumption in OLED displays, as they
do not have a separate backlight. The darker the screen, the less energy is
consumed.

The update cycle of devices significantly affects the emissions of the
devices. According to device manufacturers, approximately 15-18% of a
device's total emissions occur during use and the rest are related to
manufacturing and logistics. For example, Dell has comprehensive
documentation on the emissions of manufacturing, logistics, use, and
disposal of devices.”

22 trustworthy.systems/publications/papers/Carroll%3Aphd.pdf

2 www.dell.com/en-us/dt/corporate/social-impact/advancing-sustainability/

sustainable-products-and-services/product-carbon-footprints.htm#tab0=0

32

https://www.dell.com/en-us/dt/corporate/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm#tab0=0
https://www.dell.com/en-us/dt/corporate/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm#tab0=0
https://trustworthy.systems/publications/papers/Carroll%3Aphd.pdf

Green Code

5.4 Towards More Complex Models

As stated earlier, the basic model can be — and usually should be —
enhanced with additional components designed to either speed up the
application or make it more efficient. Such solutions include:

Caches that can store either ready or intermediate processing
results to speed up future requests. The cache can be located in
front of the service (proxy), in which case it stores responses to
requests according to network traffic and serves the corresponding
requests directly, or next to the service, in which case the service
stores results it often needs in the cache. In some systems, the
cache can be an integral part of the implementation, such as in
databases.

Content Delivery Network (CDN), which creates a local copy of
online resources close to the user. CDN speeds up the loading of
resources and, if the resource is created on the fly (for example, a
web page), it also enhances the operation of the application by
providing a previously retrieved version of the resource and
effectively reducing the energy needed to recreate the resource.
CDN can also be used to protect against DDOS attacks. CDN
works best in situations with many users or expensive resources
that need to be created programmatically.

Geographical distribution, where software executed in data
centres is placed in multiple locations. This optimises data transfer
and shortens response times. Typically, geographical distribution
requires a significant number of users or the response times being
business critical.

If the application is not completely stateless in data centres, the
solution requires some level of synchronisation of the data in the
centres or redirecting users to their "own" centre. These increase
energy consumption compared to operations in a single data
centre.

33

The Energy Consumption Model of Modern Software

e VPN connections change users' transmission paths by routing
traffic, for example, from the end-user device to the company's
internal network. Further, this network can be geographically
distributed and also use VPN connections to secure traffic between
its different parts. Every VPN connection involves the encryption
and decryption of information, which also increases the need for
computing power.

e Analytics, which monitor a user's actions on web pages or in the
application. Typically, a ready-made service and its tracking library
are used. This solution increases the size of the application and
creates a kind of side stream of data transfer between the end-user
device and the analytics service, which can be more frequent than
the service's own data traffic.

With all solutions, one must weigh the advantages and disadvantages,
including energy consumption. These solutions often improve the
end-user's experience, such as response time, or provide insight into
users' actions for developers and other stakeholders in the application
development project. But the energy consumption of the solutions is not
considered at all.

5.5 Implementation, Testing, and Deployment

Although the majority of software energy consumption occurs during
usage, the role of software implementation and testing should not be
overlooked. Especially recently, various Al-based programming tools,
such as GitHub Copilot*, have become more prevalent, significantly
amplifying the energy consumption associated with software
development. Of course, they also expedite programming significantly
and, if fortunate, even produce higher-quality code than developers with
limited experience.

24 github.com/features/copilot

34

https://github.com/features/copilot

Green Code

Programming itself does not fundamentally differ from other office work;
both involve spending much of the workday between a screen and a
keyboard — unless one is in a meeting — and the energy consumption of
tools is not significantly high.

On the other hand, testing can initiate processes that are multiples larger,
usually in an entirely automatic manner. When a programmer commits
their code to version control, several different processes are typically
initiated to ensure the quality of the produced code. The code might be
reviewed using various analysers, and afterwards, a functional version of
the software is built, installed on a test server, and subjected to a
predetermined number of tests. If errors are detected in this process, the
code is returned to the developer for corrections to the identified issues.

The process enhances the software's quality because the aim is to detect
as many errors as possible right from the outset. The costs of error
correction increase the later the error is discovered. The most expensive
correction occurs in software that has already been deployed. According
to some estimates, the cost is around 30 times higher for finding a bug
during production compared to discovering it during the design phase.”

However, this testing process is burdensome and is triggered for each
change committed to version control. If the change, for instance, is a
correction of a typographical error, the process is entirely unnecessary.
Nevertheless, the current systems' ability to differentiate between a
correction of a typographical error and the implementation of a new
feature remains unfortunately poor. Hence, it is safer to always rerun all
the tests.

If an application is compiled separately for multiple — or even several tens
of — target systems, the automated system can be highly complex and
heavy. The application is compiled anew for each change for each target
system. The virtualised environment of the specific system is initiated, the

% The exponential cost of fixing bugs,
deepsource.com/blog/exponential-cost-of-fixing-bugs

35

https://deepsource.com/blog/exponential-cost-of-fixing-bugs

The Energy Consumption Model of Modern Software

application is installed, and finally, the tests are executed. This is repeated
even hundreds of times per day for numerous platforms.

The energy consumption of testing systems, much like other IT energy
usage, is not monitored and hence remains in the shadows. This situation
should be changed, considering which tests are worth running with each
change and which, for example, should be executed once a day or even
on longer cycles. Similarly, focusing tests solely on the modified part of
the software would be logical, but such integrations are rare. And,
naturally, there are instances when modifications to one part of the
software can unexpectedly affect functionalities in entirely different areas.

Deployments are also automated in modern environments. This
significantly reduces human errors, and the process performed by
machines is faster than human-directed processes. However, the
frequency of these deployments should be considered. In some
organisations, deployments are done multiple times a day, while in others,
they occur weekly or monthly. Of course, the nature of the software
affects this, but too frequent deployments can easily lead to unnecessary
energy consumption.

Summarised

T Most modern software follows a client-server model where
servers provide services to end-user devices. The model's
energy consumption is divided into three parts: software in data
centres, data transmission between data centres and devices,
and the application on the end-user device.

2 [Energy usage in data centres includes application servers,
storage, and databases. Cloud environments and virtualisation
impact energy consumption. Optimising server usage and load is
key to reducing energy consumption.

36

Green Code

Summarised

34 The energy efficiency of data transmission depends on the route
and distance. Network type — such as mobile data or fibre-optic
— and the distance data is transmitted affect consumption.
Minimising data transmission reduces energy use.

4 Energy consumption in end-user devices varies based on device
types — like mobile phones, desktop computers — and usage
scenarios. Screen brightness, caching, and data transfer methods
affect consumption. Device upgrade cycles also impact
emissions.

5 Additional components like caches, content delivery networks
(CDNs), geographic distribution, VPN connections, and analytics
can significantly influence energy consumption.

37

6 Raiders of the Lost Efficiency

Back in the day, computers were very inefficient and had only limited
memory or storage space. Programs had to be efficient because otherwise
they could not be implemented or executed at all. Nowadays, there is
practically unlimited power available, at least in relation to day-to-day
use, and thus it can be easily wasted. Only specialised use, such as
scientific calculation, training artificial intelligence, or handling large
amounts of data, forces optimisation to be an important part of software
development.

Software has also become layered. At the dawn of computing, all code had
to be written by hand, and gradually libraries began to appear for
implementing commonly needed routines. Now there are libraries or
ready-made routines available for most tasks. It makes sense to build
software in layers with libraries to ensure quality and development
efficiency, as applications and their runtime environments have become
significantly more complex and rich in features.

However, this can easily lead to intellectual laziness. It is easier and less
expensive to choose a ready-made library than to write a routine yourself,
even if the routine is fairly simple. Of course, the solution provided by a
library is probably field tested and therefore more reliable, but the code
inside of a ready-made library is rarely looked into. If the solution is fast
enough — albeit inefficient on a large scale — no problems are noticed
during development.

38

Green Code

This is not to say that every software developer should write all their code
from scratch to be sure of its energy efficiency. This is inefficient both in
terms of developer productivity and surprisingly often with energy
efficiency because the code of frequently used libraries becomes
gradually more optimised through practical experience.

If the code written to replace a library becomes hundreds or thousands of
lines long, the chances of errors increase significantly. Similarly, problems
typically arise if the code has to perform complex operations or there are
a significant number of possible deviations from the normal process.
These situations should raise alarms, and solutions should be analysed
calmly, preferably with the help of a colleague.

Reassessing one's ways of working always makes sense to figure out
whether the problem could be solved in a different manner and more
efficiently. When these solutions are found, they should be shared among
other developers.

6.1 Waste

Similar examples can be found in various areas of software development.
On the other hand, each application is unique with its own strengths and
weaknesses. To approach the issue more analytically, it can be structured
using the concept of waste, which is familiar from lean manufacturing.

“Lean is founded on the concept of continuous and incremental
improvements on product and process while eliminating redundant

activities.”?®

In terms of energy efficiency, waste can be defined as extra, unproductive
activities that consume energy unnecessarily. Like in lean, there are
different types of energy waste. In the following, waste is discussed mainly
from the perspective of companies, because most software is at least
partially owned or used by companies.

26 en.wikipedia.org/wiki/Lean _manufacturing

39

https://en.wikipedia.org/wiki/Lean_manufacturing

Raiders of the Lost Efficiency

This discussion assumes that the application itself has been implemented
correctly. If an application makes a thousand unnecessary database
queries in a poorly written loop in each of its operations, I consider it
primarily a programming error and not just waste — even though that
operation in itself is wasteful. Waste is more laziness in thinking or
implementation than actual mistakes, and eliminating waste is very rarely
straightforward.

There are many different types of wastes — the list below is by no means
complete or final — and their impact on energy efficiency varies
significantly depending on the nature of the software, how it is used, and
the overall architecture around it. The types of waste are listed in order of
significance according to my own thinking, which means that on average,
the biggest changes can be made by addressing the waste that appears
higher on the list. However, as mentioned, this is specific to the software
in question and the main goal of the list is to offer different perspectives
on improving efficiency.

6.1.1 Redundant Software

If the software as a whole is useless, all the energy it uses is wasted. Of
course, defining the usefulness or futility of software is very subjective.
Typical examples of clearly pointless applications are remnants from
earlier times. For example, a system that monitors an inactive process.

Another example is pre-installed applications that come with consumer
computers, many of which, in my opinion, are only important for the
device manufacturer and a complete waste for the end-user.

If the software is found to be a complete waste, it should be taken out of
use immediately and the resources it uses should be saved for the benefit
of the planet.

One way to find unnecessary software is to go through all the ICT
suppliers with the financial department and find out which services are
bought from them and for what need. If the corporate ICT architecture is
not documented and maintained, then such a project can generate clear

40

Green Code

savings by removing unnecessary solutions and adjusting the running
environments of the solutions used.

6.1.2 Improper Use

Software lives in time, just like everything else in companies. When the
situation of a company changes, the software may be left not updated and
its use may no longer serve its purpose. Or it was not originally
implemented or purchased in a suitable manner.

In particular, ready-made software and SaaS services can be used partially
or even entirely for different purposes than they were originally designed
for. This does not mean writing a novel in PowerPoint, but rather
managing the recruitment process with a CRM designed for sales needs.
Both processes are similar and such cross-use may work well.

Difficulties arise if the application does not support all stages or features
of the supported process, or does not allow customisations to meet them.
This can result in a situation where, for example, heavy searches are
constantly needed to find certain information. This is usually also visible
to users as slowness of the application or a particular function.

Typically, such a solution has been tried and found to work well enough.
Then the needs are refined — for example, through practical experiences
— and the inflexibilities of the solution become challenges or obstacles. At
this stage, the application may already have stored data for a year or two,
which is then difficult to migrate to a better system. Similarly, the
implementation or procurement costs of a better system may be too high
in relation to the achieved benefit, or the sunk costs fallacy”” may mislead
rational decision-making.

Similarly, the solution may start loafing as it gradually changes over the
years — the software's various modifications form historical layers in the
application. If it is a solution produced by a company, the application
developers also change between versions and there is no time or desire to

77 en.wikipedia.org/wiki/Escalation_of _commitment

41

https://en.wikipedia.org/wiki/Escalation_of_commitment

Raiders of the Lost Efficiency

study the previous implementations in an unhurried pace, but new code is
just implemented next to or on top of the old code without understanding
the system as a whole. In this case, the functionality of the application
may meet its purpose, but its implementation is not necessarily optimal.

Removing historical layers is difficult because they are typically not
clearly separated from each other, as simultaneously new code has been
written and old code has been modified to work with the new.
Refactoring the application completely or partially would solve this
problem, but it is expensive and error-prone. Still, there are situations
where it is the most cost-effective path forward. A careful assessment and
decisions based on it are key when considering refactoring. Good test
coverage helps to detect any errors that may occur during refactoring.

6.1.3 User Mistakes

"People make mistakes, computers automate them." Anon.

Application users make mistakes. The finger or mouse cursor is in the
wrong place, typing errors occur in input fields, and so forth. Every
mistake triggers a series of actions that are waste from the application's
point of view. Similarly, the actions needed to prevent errors are also
waste, but they are useful in preventing larger waste.

The better the application prevents the user from making mistakes, the
less it needs to do unnecessary actions. Similarly, the less effort the user
needs to put in to complete their task — in terms of the number of screens
or inputs — the less the machine needs to work. Such matters are more
related to the user experience and interface than to code efficiency, so
other experts besides software developers are needed in solving them.

Users are different from each other in their premises and they may have
limitations in using the application. Fortunately, ageing does level the
differences between people by degrading everyone's cognitive and
physical abilities. Taking these matters into account is called accessibility

42

Green Code

and it has been on the rise lately due to the EU's accessibility directive®®.
Accessibility is also energy efficient because it reduces errors by making
the application easier to use for everyone — not just for special groups.

It is worth noting that removing errors does not necessarily mean better
testing or instructions, but the best result is achieved by eliminating the
possibility of error. A bigger and almost zen-like question is how this is
done in practice.

Eliminating or reducing the possibilities of errors is holistic design work
that ponders on the process and the application facilitating it. The process
is made as straightforward as possible and data already known by the
application is used to the full benefit of the user. The less interactivity the
user is required to have with the application, the less there is danger of
human errors.

On the other hand, errors can also be removed by simple user interface or
text changes. User interface testing is a key activity, as the software
developers know the system too well and thus are not the best people to
consider how the system is actually used in real life. Similarly, reading
user feedback and interviewing people working in customer service may
be an eye opening experience to find the real challenges. These channels
do not provide ready solutions, but formulating the problem eases making
the changes.

6.1.4 Wrong Architecture

The architecture of an application determines what is easy and what is
difficult to implement in the application. The architecture is not always
optimal considering the tasks of the application, and the code of the
application may have to "fight" against the architecture or features that
need to be implemented in an unnecessarily complex way. This increases
energy consumption and also the likelihood of errors in the software.

2 eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:320161.2102 &
from=EN

43

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016L2102&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016L2102&from=EN

Raiders of the Lost Efficiency

The typical reason for waste caused by the architecture is its ageing as the
purpose or usage of the application changes over the years. Sometimes
the chosen architecture is wrong to begin with, but this should become
evident during the development of the first version and should be reacted
to. The library or application framework used by the application may also
be wrong or difficult from an architectural point of view, leading to
various needs for adaptations and other energy- consuming difficulties.

Changing the architecture means practically rewriting part of the
application, so it is not a small operation. If the structure of the
application is modular or it is implemented as independent solutions, they
may be adopted with little effort in the new architecture. But the worst
scenario may be rewriting the entire application.

The architecture can also be extended to the enterprise architecture of a
company that defines the interaction and compatibility of different
systems related to running the business. This can also be built improperly
in relation to business objectives, causing waste in the processing, transfer,
and storage of information. Changing this higher level architecture is an
even bigger task than modifying the architecture of a single application.

6.1.5 Wrong Data Models

The main task of software is to process information and present it to the
user in a form that is understandable to humans. Information is stored and
processed within various data models that try to organise the information
according to the operation of the application and the needs of people.

This is not always successful, and the data model may be incomplete or
inefficient for the intended purpose. Incomplete data models were a
major problem when memory and storage space were limited and data
models were often designed based on their required number of bytes. If
some information was not available, it could either not be processed at all
or it was squeezed into a less necessary field of the data model. These
problems have been solved with the increase in memory capacity and
nowadays it is relatively straightforward to expand the data model within
the application, unless the application is embedded software. However, if

44

Green Code

the data model is derived from background systems or is otherwise
integrated into a larger whole, refactoring it can be difficult.

The greater challenge is to choose the right data model for the need.
There is a risk that the desired use of the application is not aligned with
the used data models, and thus the code has to constantly go through the
data structures searching or combining records to display to the user.

Fixing such a problem is usually unfortunately challenging, because the
data model, together with the architecture, determines the internal
structure of the entire application. The necessary changes are deep and
error-prone. Often, the problem is tolerated instead of being solved.

One subtype of data model waste is the incompatibility of the structures
of used databases. Although database engines are excellent at optimising
queries, they cannot, in the end, fix structural problems. Refactoring
database structures is not straightforward, but especially for solutions that
serve heavy loads, the effort pays off.

Regardless of the modifiability of the database structure, it is important to
ensure the existence of the correct indexes. Indexes by no means solve all
problems, but they are still worth using.

There are also differences between database engines, for example,
relational and document databases can be used to solve certain kinds of
problems efficiently. On the other hand, they can be extremely inefficient
when used against their designed purpose.

6.1.6 Redundant Data

Very few applications actively delete information. There are clear cases
where user information is deleted when use ends or when GDPR?*
requires it, but software generally — and unnecessarily — likes to hoard all
sorts of information.

2 General Data Protection Regulation,
en.wikipedia.org/wiki/General Data_Protection_Regulation

45

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Raiders of the Lost Efficiency

Data models are usually designed from the perspective of data integrity
and searchability. Deletion is not necessarily considered, because the data
may be needed for years or even forever. But not all historical data is
equally valuable, and it is a good practice to also consider the data model
from the perspective of deletion. For example, it is probably not
reasonable to keep lists of tasks from ten years ago, but they will not
disappear from the service by themselves and users cannot be trusted to
delete all unnecessary items.

In the design phase of applications, I recommend designing the data
model to allow partial deletion of data. This is smart both from the
perspective of GDPR and energy efficiency. Unnecessary data, after all,
multiplies: its effects show up in longer processing operations in
databases, in the use of disk space, in the duration of backups, and the
size of copies, potentially in a separate database of an external search
engine, and in its backup, if one is taken. The list is long and cumulative.

It is a good idea to occasionally examine the contents of the data stores of
older applications. You may find completely unnecessary data that is not
displayed or used anywhere, but is just wasting space in the database. Or it
is displayed and processed, but the users do not need it for anything —
doubling the waste.

6.1.7 Non-optimised Data

Modern applications transfer a lot of data both internally and with other
applications. Since most applications operate on a client-server
architecture, data transfer is an essential part of the application's
operation.

As previously noted, data transfer has an energy cost, which is based on
the amount of data transferred. In principle, the less data is transferred,
the less energy is used.

The amount of data transferred can be controlled by adjusting the type of
data transferred and how often it is transferred, in other words changing
the frequency of the transfer. Since data transfer is free or very cheap for

46

Green Code

app developers — unless there are huge amounts of data or users — it is
rarely given much attention. The typical situation is that users complain
about application slowness or the data transfer bill that surprises the
software owner.

Typically, two kinds of data are transferred:

1. Communication between application components, which is
determined by the protocol between the parties.

2. Various files or streams, such as images or videos to be presented
on the client device or attachments to be stored on the server.

It is more difficult to affect the volumes of the first category, for instance,
the conversation between the application and the database is conducted
using set protocols. Of course, the data transfer volume can be affected by
trimming the data retrieved or sent, but this is not always possible.

The second category can be affected with user experience design by
reducing the amount of files displayed or replacing the presentation with a
less consuming one. For example, changing the used file format to a more
efficient one, or reducing the resolution or number of colours for images
and videos.

Efficient caching of files on the client device or transferring them as part
of application installation can reduce the need for data transfer. Using
caches increases the application complexity and makes development
more expensive. In any case, it makes sense to reduce the file size and it is
worth compressing everything possible.

There are various services on the Internet that can optimise files. For
example, significant reductions can be made in the size of images or fonts.
The book "Sustainable Web Design"* introduces and lists a large number
of solutions with practical examples. For example, significant savings can
be achieved for fonts by removing unnecessary variants and glyphs that
are not needed for the application or website. In the removal of glyphs, it

30 abookapart.com/products/sustainable-web-design

47

https://abookapart.com/products/sustainable-web-design

Raiders of the Lost Efficiency

is important to consider future safety: even if a certain glyph is not needed
at the moment, it may be needed in the future, for example, to correctly
display the name of a customer whose name might contain missing glyphs.

6.1.8 Redundant Data Transfers

It is often easier to transfer data multiple times for the sake of certainty or
convenience. This is easily overlooked because transfer networks are fast
and the energy consumption is hidden. For example, in data
synchronisation, the entire bundle of data may be transferred from the
server to the client device every time instead of just changes. The reason
for this is fear of synchronisation failure or data degradation over time due
to uncontrolled changes. The problem is not easy to solve, so avoiding it is
attractive.

Various synchronisation libraries and protocols have been developed to
solve the problem. Using these can result in significant savings in data
transfer. It should be noted that the implementation of synchronisation
can make the development of the application, and especially the search
for errors, more complicated. There is also a risk that the data will remain
only partially coherent. These risks should be considered in relation to
the benefits achieved.

There are also truly decentralised protocols, in which each device both
sends and receives data, so that data can be obtained from a location
closer to the client than from the server.

6.1.9 Algorithmic Inefficiency

Finally, we come to a topic that is typically the first to come to mind for
an experienced software developer when talking about efficient coding.
The efficiency and, above all, suitability of the selected algorithms and
data structures for the task have traditionally been major pain points in
evaluating the efficiency of software. The topic is taught in university
courses and working with algorithms is usually enjoyable for developers.

48

Green Code

The algorithms and structures of long-used programming languages and
libraries are usually thoroughly optimised and therefore energy efficient
as long as they are used for the right purpose. On the other hand, the
efficiency of self-written or incorrectly chosen algorithms can be very
poor — especially, if the developer does not have the time or ability to
consider the chosen solutions from an efficiency perspective.

The most efficient algorithms and data structures are often also more
challenging to understand than basic algorithms that solve the same
problem. It is also important to understand that old and once efficient
algorithms may not be efficient on modern processor architectures.

Typically, there are certain parts of an application whose code is executed
significantly more than other parts of the application. These include, for
example, the handling of events performed by users (event loop), an ORM
library maintaining database connections, or a component monitoring
user sessions. It is worth identifying such hubs of activity through
profiling, or if that is not possible, through architecture or data flow
analysis.

It makes sense to invest more in optimising hubs and leave less used parts
as they are. Sometimes such a hub is in the library or application
framework code and optimising it may be impossible. In this case, the
only available action is to find the next candidate for optimisation until
your own code is reached and work can begin. Otherwise, the significance
of the targets becomes too small.

6.1.10 Misguiding Users

In addition to users making mistakes, users are often misled in services, or
achieving certain goals is made difficult, for example, closing their account
or requesting help. Dark patterns are user interface solutions that deceive

3t jolynch.github.io/posts/use_fast_data_algorithms/

49

https://jolynch.github.io/posts/use_fast_data_algorithms/

Raiders of the Lost Efficiency

the user into acting against their own interests because it benefits the
party offering the service.*

Besides active misleading, for example, trying to convince the user to
purchase a certain service with a high price, there is also passive
misleading. In such cases, the user is prevented from finding a
functionality that is negative for the company, or using it has been made
difficult. A typical example is hiding the cancellation of an order in an
atypical or semi-hidden location or requesting an order number that is
not requested elsewhere in the application.

These misleading practices cause the user to unnecessarily navigate
across the service, which increases energy consumption. Similarly, if the
user accidentally takes a service into use without actually intending to do
so, the ordering and cancellation of that service is a waste.

These design models are harmful in many ways and their use is also
ethically questionable.

Misleading solutions can also be implemented accidentally. Even if the
idea is good, the implementation may still be misleading to the user. Some
business objectives, such as the time spent on the site or the number of
pages visited, may lead application development to adopt such misleading
models or practices that serve only the business instead of the user.

These models usually surface during user research. Testers do mention if,
for example, logging out of the service or ending an order has been made
too difficult.

Similarly, UX writing — designing and writing texts related to user
experience — helps against accidentally implemented harmful models. For
example, it is good to pay attention to the content and formatting of error
messages so that the application user does not try again and again to do
the same action that cannot actually be done.

%2 en.wikipedia.org/wiki/Dark _pattern

50

https://en.wikipedia.org/wiki/Dark_pattern

Green Code

6.1.11 Too Much Code

Nowadays, applications are assembled from a large number of libraries,
which provide functionality, data structures, and algorithms that are
combined according to the logic of the application. Libraries rely on other
libraries, which in turn rely on others. In the worst case, the application's
own code may be only a few percent compared to the amount of code in
the libraries, and the application may use only a few percent of the
libraries' code.

This creates a problem especially when transferring the application to an
end-user device. Practically, all applications are downloaded from the
internet, and as a result, the same library may be on the device dozens of
times within different applications. Yet, only a fraction of the library's
code may be used. To solve this problem, it is advisable to use application
bundlers that remove unnecessary code and squeeze the application into
a tight package.

Mobile and desktop applications are downloaded once upon installation
and possibly during updates. Web applications, on the other hand, are
downloaded much more frequently, depending on the settings of the
cache and browser, which makes the problem significantly larger. This
challenge can be reduced by adjusting the file cache policy.

It is advisable to investigate the size and dependencies of a library before
deciding to use it in an application. If only a small amount of code is
needed, it is worth considering either using a smaller library — if such an
option is available — or writing the required code yourself. In the limits
allowed by their licences, it may also be possible to copy code from open
source libraries into your own application.

The more libraries an application uses, the more often they are updated,
but their update schedules are of course not linked to each other.
Unfortunately, in newer languages or rapidly developing environments,
such as currently in web front-end implementations, libraries are
developed almost at a break-neck speed and changes can break backward
compatibility. Each added library also increases the maintenance
workload.

51

Raiders of the Lost Efficiency

Of course, there is a flip side to the matter. The code of a ready-made
library is typically used in thousands of projects and thus tested
thoroughly. The library has a maintainer that updates the library, for
example, when security breaches are found. Overall, the library develops
further without investing your own time and resources. Of course, the
changes might not always have a positive impact, as they may break the
functionality of the application or force big internal changes.

6.1.12 Inefficient Programming Language

There are significant differences in the efficiency of programming
languages. Some languages are compiled into machine code, some into
interpreted bytecode, and some are compiled into bytecode at runtime
and then interpreted. In addition, the different emphasis and internal data
structures of languages affect efficiency.

However, the choice of used language is not always in the hands of
programmers and cannot be justified solely on efficiency — otherwise all
software would be developed in machine language, C, or similar languages
close to the hardware. The characteristics of a language help and protect
the developer in various ways, and over time, certain kinds of solutions
have emerged in the ecosystem surrounding them. Although in theory,
languages are equal as they are Turing-complete®, this is not the case in
practice. The characteristics of languages, their surrounding ecosystems
with libraries and components, and the availability of developers
significantly affect the usability of the language in the desired
environment and solving the problem in question.

Researchers at the University of Beira Interior in Portugal have studied
the efficiency of about twenty programming languages® using ten
different test tasks. The time taken to complete the task and the memory

% If a programming language is Turing-complete, it can simulate the operation of

any other computer or program; en.wikipedia.org/wiki/Turing_machine
3 haslab.github.io/SAFER/scp21.pdf

52

https://haslab.github.io/SAFER/scp21.pdf
https://en.wikipedia.org/wiki/Turing_machine

Green Code

used have been measured, and the languages have been ranked in terms of
efficiency based on these measurements.

The test setup is not perfect, as the used implementations of routines
between different languages are not mutually comparable, but rather have
been developed by various developers. For this reason, the results can
only be considered indicative at best. As expected, the tests revealed
significant differences, for example, between compiled and interpreted
languages.

According to the study, the three most energy-efficient languages are C,
Rust, and C++. Among the more widely used languages, Java, Swift, Go,
and JavaScript also performed well. The least efficient languages were
Perl, Python, and Ruby, and among the most frequently used languages,
Lua and PHP were at the lower spectrum of efficiency. The difference
between the most efficient and the least efficient language was almost
80-fold.

The tests were of a mathematical nature, so, for example, the 10
capabilities or the efficiency of libraries available in the ecosystem was
not examined. These have a significant importance in modern application
development, as the current paradigm is based on transferring data and
building applications from ready-made libraries.

There are also efficiency differences between language runtime
environments. For the same interpreted or bytecode-compiled language,
there can be different interpreters, some of which produce more
optimised code than others. The efficiency of a language can also increase
— or sometimes even decrease — with the new version of the runtime
environment without any application code changes. Therefore, it is
advisable to ensure that the application is run in the most efficient
runtime environment possible.

In the tests, the correlation between execution time and energy
consumption was also examined for each language. The correlation was
either strong or very strong for all languages. This suggests that, regardless
of the implementation language, a faster application is more energy

53

Raiders of the Lost Efficiency

efficient than a slower one. No similar correlations between memory and
energy consumption or execution time and memory consumption were
found except in a few languages.

Since software developers may not have the ability to freely choose the
language, it is better to focus on optimising the code written in the current
language instead of changing languages. Of course, it is possible to write
frequently used parts of the system in a more efficient language.

When adding new components to the system, it makes also sense to
consider energy consumption in the choice of the implementation
language. However, it is not advisable to focus only on energy. There
might be a shortage of experts in a more efficient language, there may be
no necessary libraries available, or the current and planned languages may
not work well together.

However, it is good for software developers to master several languages,
as this broadens the project team's ability to choose the language
according to the task. Being proficient in multiple languages makes it
easier to learn new languages, too.

6.1.13 Waste in Starting a Software

There are basically two types of application environments in data centres
and cloud services: the application starts once and serves users until the
process is shut down, or the application starts every time to serve a user's
request.

If the application is of the first type, it is useful to prepare the application
for long-term operation when it starts and do those tasks in advance that
should be done in any case at some point during the application's use.
These tasks are usually reading settings, opening database and other
connections, reading generally needed information into memory, or
starting possible subprocesses. If the preparatory tasks are particularly
heavy or are needed only in rare situations, it may be reasonable to do
them only when the actual need arises.

54

Green Code

If the application is of the second type — such as PHP applications or
cloud functions — only those tasks that are essential for serving all
requests should be done when starting. Then the application should
proceed based on what is needed to serve user requests — in other words,
the starting process would be divided into several phases. This solution
does not fit all situations; the architecture of the application may not allow
the scattering of starting phases within other code or the codebase
becomes too confusing in terms of further development and error
sensitivity.

It should also be noted that the statelessness and fast startup of the
application to serve user requests may allow using cold standby instead of
hot standby. An inactive copy of the application is not kept running
waiting for the active application to fail, but a new copy is started when a
failure occurs. This approach saves server resources for other needs.

6.1.14 Redundant Redundancies

In modern applications and websites, there is additional "eye candy" that
is intended to make the use of the application more comfortable, more
human, or more fun. If these actions do not facilitate the actions of users
or reduce errors, they are likely to be waste. This does not of course mean
that all applications should be stripped down as much as possible. Eye
candy has its place, but it should be curated according to user needs and
not scattered all over the place.

We humans are still animals with hunter-gatherer instincts and everything
that moves catches our attention. When using software, movement in the
user interface very rarely means danger, but our eyes are still naturally
drawn to animations. If you want to focus the user's attention on a
changed area or a new functionality that has become available, using
animation makes sense. On the other hand, there are a lot of cases in
which attention-seeking has no reasonable purpose; for example, in a
large number of websites elements appearing on the page are animated
for show-off purposes only.

55

Raiders of the Lost Efficiency

It is important that the application tells the user that their press has been
registered or the mouse cursor is in an area where clicking accomplishes
something. This reduces cognitive load, uncertainty, and errors. Still, it is
reasonable to remove unnecessary attention grabbers. If you do not want
to attract the user's attention to an animation on the screen, the animation
is waste in two ways: it takes attention away from the essentials and
unnecessarily consumes energy.

Most background videos can also be added to this category. In general,
videos should be used sparingly because they are heavy to transfer and
their information value compared to the amount of data is meagre. Videos
have their time and place, as they facilitate understanding of matters, but
often they could be replaced with animations — which is also usually
video but compresses much more efficiently — or a short text.

Technically, some of the performance impact of animations and other
similar elements can be mitigated by modifying the behaviour of the
application or website. If the application or browser is in the background,
in other words another application is on top, the amount of processing
should be reduced and all user interface updates should be turned off. On
smartphones, the operating system also adjusts the behaviour of
applications in this regard.

In addition, some of the application or website functionality may be
hidden from the user, waiting at the bottom of the page or the user has
already passed the point on the page while scrolling down. In this case, for
example, loaded images and videos can be removed to save memory and,
if necessary, restored when the user returns. Of course, it must be
assessed or, if possible, monitored how many users pass through the views
in reverse, so that removal and re-loading does not cause additional
burden.

Formats also affect energy consumption, for example, GIF animations
play in browsers even when they are not visible, while CSS-based
animations automatically turn off when they are off the visible area.*

% webkit.org/blog/8970/how-web-content-can-affect-power-usage/

56

https://webkit.org/blog/8970/how-web-content-can-affect-power-usage/

Green Code

6.2 Minimisation

Optimising the energy efficiency of applications can also be approached
through minimisation instead of waste. In this case, the aim is not to
identify issues or events where energy is wasted, but to create the most
compact solution that meets the requirements.

Minimisation requires good advance planning. Each requirement should
be questioned and one must consider whether the application can suffice
without it. But truly important requirements should still be implemented,
as if the result of minimisation is only a half-finished application that
needs to be fixed later, the probability of inefficiency or waste increases
quickly. On the other hand, a well-planned minimal solution is typically
elegant to implement and straightforward to use. In order to succeed in
minimisation, both the business and user needs must be known in
sufficient detail.

Minimisation works particularly well in situations where the challenges to
be solved are clearly defined. In addition, them being numerically
measurable helps to understand magnitudes and implementation
decisions are not made based on personal biases and preoccupations.

When the main purpose of the service is the focal point of the design,
using it is straightforward and the user experience improves. At the same
time, conversions increase and user paths shorten, which improves
business results, energy efficiency, and user experience. It takes courage
to break away from functionality-centricity, but the results are rewarding.

In addition to streamlining needs, narrowing the target group also
facilitates minimisation, as it eliminates different usage scenarios. The
narrowing is advisable to be role-based, for example, whether to offer
views to managers and employees in a service aimed at payroll clerks, or
to meet their needs through something else. Expert users and other pro
users can also be provided with their own interfaces around the main
focus of the application, so that they do not interfere with satisfying the
needs of normal users.

57

Raiders of the Lost Efficiency

In consumer services, it is extremely important to ensure that the
narrowing of the target group does not restrict the opportunities of some
groups to use the service, as this may lead to discrimination. For example,
removing accessibility from the requirements of an application is not
sensible minimisation.

The advantage of minimisation is the simplification of the application,
with shorter user paths, fewer functions and their error checks, a clearer
user interface that is less error-prone, and a lower cognitive load on the
user, as the application offers fewer visual messages.

It is also worth remembering that the minimum viable product (MVP) and
minimisation are two very different things. MVP is the first version or
prototype of a solution, and it is used to test the feasibility of the idea. A
minimal application, on the other hand, is a complete solution that is not
intended to be expanded later without significant reason.

However, the MVP mindset has the advantage that the application is
implemented to meet the assumedly most important objectives. Along the
way, more is learned about the markets and users and an attempt is made
to make the most sensible decisions based on tight prioritisation. If this
does not lead to extra layering or other waste, the result is a tightly
packaged solution with no excess functionality.

Summarised

1 The abundant resources available in current software
development practices can lead to neglecting optimisation,
resulting in inefficiency. Developers should refrain from solely
streamlining their own work and should prioritise energy
efficiency.

58

Green Code

Summarised

2 The challenge of software inefficiency can be approached
through the familiar concept of "lean," focusing attention on
non-value-adding activities that increase energy consumption.

4 Choosing the right architecture, data models, algorithms, and
programming languages, along with managing data transmission
and eliminating unnecessary elements, significantly affect
software energy consumption.

4 User-centric design and accessible user interfaces minimise user
errors and the resulting waste.

5 Minimisation offers an alternative way to build energy efficiency
— focusing on the essentials and eliminating excess functions
simplifies the software, enhancing user experience and energy
efficiency.

59

7 Solutions

The previous chapter listed a large number of different performance
bottlenecks. Building on them, this chapter discusses various ways to
reduce the software's environmental load. These solutions generally
improve the performance of the software in several metrics, as energy
consumption and the execution time of the software are strongly
correlated. The time is also reflected in the slowness of the application,
which is one of the biggest sources of user irritation.

Similarly, reducing energy consumption also reduces hosting expenses.
Changes can be significant in cloud services, where billing is based on
usage, clock cycles, or data transferred.

None of these solutions are silver bullets, and they should be applied in
the context of your own software. And if all of these are already familiar
and in use, congratulations on your ability to produce efficient software. I
am also happy to receive new ideas for increasing eco-efficiency.

7.1 Minimise Stored Data

The less an application processes and stores data, the less it also transfers
it between the device and the server.

e Minimising the application data model — remove unnecessary
or outdated information, design processes to easily remove data,
store only the final results of the process and destroy intermediate

60

Green Code

results. Store data in a suitable format wherever possible, using the
data types offered by the language and database reasonably.

Minimising the static data and files — choose the right format
and remove unnecessary or unnoticeable items. Adjusting the
resolution and aggressiveness of compression of images and videos
correctly is essential. It is also worth considering whether the
representation of an item can be changed to another form, such as
an animation or a pair of images that compress better than a
captured video. All of these savings accumulate because the files
are processed only once. Some of the technical changes may
require manual work. All other tasks should be automated actions
as part of the CI / CD pipeline.

Minimising user input — if the user can attach their own images
or videos to the service, it is advisable to crop and resize the stored
versions into a suitable size, compress them using reasonable
algorithm and settings, and store them in an efficient format. These
actions should be done on the end-user device if possible. The
data coming from the user to the application can also be minimised
by limiting the size of the user's inputs, such as the length of a
video.

Cold storage of data — sometimes data cannot be removed, but it
must be accessible at least with some effort. In these scenarios,
cold storage services such as Amazon Glacier or Google Cloud
Archive can be a more efficient solution to store data than keeping
it constantly available as part of the application.

Minimising and deleting analytics data — applications and
websites store analytics data on their own activity, which is used to
both improve the technical performance of the service and
understand the needs of users. The error-free operation and
continuity of the business are both important, but it is worth
weighing what data is needed and for how long.

61

Solutions

7.2 Minimise Transferred Data

Transferred data is tightly intertwined with minimising data, in other
words, the less data is processed, the less is transferred. But in addition,
there are special considerations for transferring data:

62

Adjusting frequencies — determine the most reasonable
frequency for transferring data in terms of user experience and the
internal state of the application. From the point of view of energy
efficiency, the longest intervals without communication are good,
but they can deteriorate the user experience.

Compressing data — if the used format does not offer
compression itself, it is practically reasonable to compress and
decompress all data. Text data compresses to a fraction of the
original quite efficiently. Compression gives additional benefit if
the data has been combined as described in the item below.

Choosing the protocol or message format — use an
energy-efficient protocol or message format. There are differences,
as some of them are very chatty and others accomplish the same
tasks with a smaller amount of data. If the data is very structured or
there is a lot of it, it is worth considering using binary messaging
instead of text-based communication. Changing communications
from one form to another is always costly, so it is advisable to
weigh the benefits of reducing data transfer against the increased
complexity of the application and its runtime.

Removing presentation data transfer — the server may produce
HTML code that is displayed on the device either in a browser or
within the application. If there is a lot of HTML to transfer, it may
make perfect sense to transfer only the textual content in a very
concise format and render the HTML code on the device using a
template library.

Transferring only changed data — if the same data is both on the
server and in the application, it is sufficient to transfer only the
changed data (delta) to update the other end. There are libraries

Green Code

available for this, which should be used wherever possible. The
change is not trivial and can complicate maintenance and
troubleshooting significantly.

Identifying unchanged data — if data does not change or
changes very rarely, it can be kept on the user's device without an
expiration date. Servers can serve such data from various caches
instead of the application server. The data transfer can also be
implemented in such a way that the server informs the client
application about changed data among other communications and
the client fetches the data only after being informed.

Verifying data before sending — the data entered on the user's
device should be verified before being sent to the server, which
reduces the number of potential error messages sent. It should be
remembered that checking on the user's device does not eliminate
the need to also check the data on the server. If the check is
intensive and the amount of data being transferred is small, it may
be environmentally more efficient to only check on the server.

Combining data for transfer — multiple messages can be
bundled into the same transmission, for example, reporting user
analytics data along with the user's data sent to the server. This
requires that the messages are easy to bundle and the result is more
compact than the messages separately.

Minimising HTTP headers — most communication today
happens over HTTP. Ready-made libraries may automatically
attach various headers to requests or responses. The headers
should be reviewed and unnecessary ones removed in order to
reduce energy consumption.

Reducing HTTP redirects — to make life easier for users, web
servers can add redirects when resources move to a new location,
so that an HTTP request is responded to by directing to make a
new HTTP request to another address. Typical example is a slash
added to certain addresses in WordPress. Such extra hops should

63

Solutions

be removed whenever possible by using the correct address in the
request.

Minimising server-to-server transfer — typically, a database
server or similar is a part of the server-side platform, to store the
processed data. Minimise the amount of data retrieved in a single
request to the right size so that unnecessary data is not retrieved
and, on the other hand, a new request is not needed.

7.3 Reduce Code

Reducing the code of an application leads to a decrease in the size of the
application, making it lighter to transfer over the network and potentially
faster and more efficient to launch.

64

Removing dead code - if a certain part of the application is no
longer used, the code can be simply removed. If the need to return
to it arises, the old code can be found in version control. If version
control is not in use, it is advisable to start using it immediately.
Version control requires both storage space and processing
capacity, but in turn significantly improves the reliability of the
software development process and reduces errors in the produced
solution.

Reducing the number of libraries — most of the application
code resides likely in third-party libraries. Some of these are small
and efficient, while others are large and poorly implemented. It is
difficult to see the difference from the outside. If only a small
portion of a library is wused, consider the possibility of
incorporating the used features into your own application and
removing the library. Of course, you need to check whether the
library licence terms allow this. Remember that the responsibility
for any problems in the code will shift to you.

Some libraries have a lighter version that contain, for example,
90% of the functionality with much less code.

Green Code

Reducing the features of the application - if a feature is not
widely used or is outdated, it is advisable to remove it from the
user interface and then remove the resulting dead code.

Compiling the application separately to different
environments — if an application can be installed in a variety of
different environments, such as several versions of the operating
system, there may be environment-specific parts or two versions of
the code for two different architectures in the application binary
file. Instead of offering a single file, consider compiling the
application separately for different environments and offer the
correct version during the application download process. Note that
mobile app stores do this automatically.

7.4 Improve Application Efficiency

As the runtime and energy consumption of an application are strongly
correlated, any measures taken to improve the efficiency of the
application will also improve its ecological sustainability. There is a vast
amount of literature on this subject and university-level research is being
conducted, so only the surface has been touched here.

Choosing the right algorithms — algorithms have differences,
and some are well suited for handling large masses of data, while
others are efficient only with small amounts of data. Because
software developers are usually in a hurry due to customer or
schedule pressure, the first suitable or functioning algorithm may
be taken into use without further consideration of efficiency.

The problem hides itself easily due to the typical small size of test
data sets and the powerfulness of the developers' machines. I
encourage using libraries and algorithms that have at least some
documentation about their efficiency and to search for information
about algorithm efficiency.

Choosing the right data structures — data structures strongly
determine the operation of the application. Some are designed to

65

Solutions

66

be efficient for large amounts of data, and others break down with
even small datasets. In addition, the data structure must support
the proper execution of the software. Even an efficient data
structure will not help if the application has to constantly go back
and forth through it searching for information.

Optimising in the right place - typically, there are a few
locations in an application where a large proportion of the
application's execution time and energy is spent. These should be
identified and optimising them is beneficial. On the other hand,
optimisation should not be evenly distributed across the entire
application, and premature optimisation is harmful — that is, the
functionality of the application must be understood in depth
before excessive optimisation.

Refactoring — if the implementation of an application does not
meet the requirements, it may have to be rewritten partially, or
refactored. This is a labour-intensive task that also easily leads to
errors, so the requirements or benefits must be sufficiently
significant. In refactoring, I recommend considering all the advice
in this paragraph and applying it when possible. Comprehensive
test coverage or strict typing help to ensure that the refactored
application works as intended.

Changing the runtime environment — there can be significant
efficiency differences between the runtime environments of
interpreted and bytecode languages. Usually the differences are
between runtime environments from different providers, but
upgrading to a newer version can also provide additional
performance. Follow the development of runtime environments
and choose the one that is best suited to your application.

Changing the implementation language — sometimes it is
reasonable to change part of the implementation of an application
to another language for efficiency reasons. The most typical
examples are routines implemented in C that are called from
applications written in a scripting language. The solution is not

Green Code

straightforward and all languages cannot easily be combined with
each other, but especially in situations requiring heavy calculation,
this might be a good option. On the other hand, implementing the
entire application in a different language usually does not make
sense due to costs.

Taking into account background execution — both desktop and
browser applications are often in the background while the user
focuses on other tasks on their device. Both operating systems and
browsers automatically alter their behaviour for background
execution by adjusting prioritisation to squeeze down the available
processor cycles, and modify, for example, the frequency and
timing of executing scheduled tasks. In addition, background
execution can be taken into account in your own code, as long as
the application gets a signal for switching to background and
returning to the foreground. When running in the background, the
user interface is not updated and timers are set longer, for example,
information is retrieved from background systems with lower
frequency than normally.

7.5 Use External Solutions

To improve efficiency, it is also possible to use various external services
that act as intermediaries between the server and the user's device. These
solutions typically are designed for content management environments,
but of course they can be used creatively elsewhere. Other external
solutions are also available and their advantage is optimisations for
specific tasks on code and sometimes also on hardware level.

Using a Content Delivery Network — CDN stores data near the
user, typically they have servers in local operators' backbone
networks. The use of CDN is reasonable especially when the
service has many users who are served the same information or
files, or when the service is globally distributed and latency needs
to be reduced. CDN stores data on its own servers around the
world, so the amount of data multiplies.

67

Solutions

e Cache and load balancing servers — There are solutions for fast
storing and retrieving of temporary or permanent data for various
purposes. They can be used, for example, to share intermediate
results requiring a lot of processing power to compute among
several application servers. In such a case, the increasing
complexity of the application and the challenges of keeping the
cached data up to date should be considered.

e External encryption solutions — If the system is widely used,
using an external SSL accelerator might be advantageous. This may
require introduction of new devices, but dedicated hardware
designed for encryption may be significantly more efficient.
Similarly, it may be beneficial to use an existing VPN solution to
secure communication between internal applications instead of
using encrypted connections within the application.

7.6 Other Solutions

The world is moving towards greater volatility in energy costs due to the
increasing use of renewable electricity production methods. This
combined with the energy crisis that has hit Europe due to the war in
Ukraine has made the timing of energy consumption more significant.
Volatility is unlikely to disappear within the next few years because
energy storage is still in its infancy.

As a rule of thumb, when energy is cheap, it is also renewable. If there is a
need to perform computations that are not tied to a specific time, it is best
to schedule them for periods of cheaper energy. This way, both the clean
energy consumption is maximised and the energy price peaks are evened
out, which affects, for example, people in the most vulnerable position.

There are already such solutions and, for example, Carbon Aware SDK?*
found on GitHub, can be used to enable your own applications to adapt to
the changes in the price of electricity.

%6 github.com/Green-Software-Foundation/carbon-aware-sdk

68

https://github.com/Green-Software-Foundation/carbon-aware-sdk

Green Code

The energy consumption of development servers and environments can
also be examined critically. For example, should staging and test servers
be shut down at nights and on weekends? Are their configurations
appropriate or are they too powerful considering their usage and
therefore consuming too much energy? Further, the staging and test
environments can be virtualised and containerised to use devices as
optimally as possible.

Summarised

1 Minimise data processing; reduce application data processing,
storage, and transmission by optimising data models, static files,
and user inputs.

2 Decrease data transmission by optimising transmission
frequencies, compressing data, selecting energy-efficient
protocols, and reducing HTTP headers and redirects.

3 Reduce the application's size by removing unnecessary code,
minimising library usage, and eliminating unnecessary or rarely
used functions.

4 Choose appropriate algorithms and data structures, optimise
critical parts of the application, refactor if needed, and consider
switching execution environments or programming languages.

5 Ciritically assess the energy consumption of development
servers, optimise testing and production environments, and
contemplate virtualisation and container technology for optimal
resource utilisation.

69

8 Special Solutions

In addition to the basic application code, there are several energy-
consuming solutions in use today, such as artificial intelligence or block-
chain. These need to be addressed separately because their energy
consumption differs from that of traditional application code. In the worst
cases, the use of such solutions can skyrocket energy consumption. On
the other hand, there are also undeniable benefits to their usage. The
crucial point is to identify how and why energy is being consumed and
whether it can be addressed.

In this chapter, a few commonly used solutions are introduced, whose
energy footprint can be significant.

8.1 Artificial Intelligence

Artificial intelligence (Al) solutions came into the public consciousness in
the year 2022, particularly with the likes of ChatGPT and DALL-E making
Al testing and usage more accessible without requiring specialised
programming expertise. Correspondingly, expectations for the business
impacts of Al grew exponentially. For instance, Gartner predicts that by
the year 2024, 40% of enterprise applications will incorporate generative
Al capabilities. Similarly, they forecast that 15% of applications will be
authored by Al by 2027.%

% Gartner Experts Answer the Top Generative Al Questions for Your Enterprise,
www.gartner.com/en/topics/generative-ai

70

https://www.gartner.com/en/topics/generative-ai

Green Code

In this section, various forms of Al, machine learning, and related terms
are grouped under the umbrella concept of artificial intelligence.

Al involves computationally intensive processes and its energy
consumption can be substantial.

More has been written about the energy consumption of artificial
intelligence in recent times, but much like the treatment of typical
software energy consumption, concrete figures are scarce — mainly
because the companies developing Al don't disclose them publicly.*® Al
applications are often run as cloud services, concealing real energy
consumption within service billing.

For instance, it's estimated that around 10-15% of Google's electricity
consumption is attributed to Al usage.* In 2021, Google's electricity
consumption was 18.3 terawatt-hours, which would place Al consumption
somewhere between 1.8 and 2.7 TWh. Even the range of 0.9 TWh is a
significant figure, roughly equivalent to a month's production of the
Finnish Olkiluoto nuclear power plant's Unit 3, the most powerful nuclear
plant in Europe.* Furthermore, this single unit cannot cover Google's Al
electricity consumption, as its annual output is approximately 12 TWh.

As these examples show, consumption figures are rough estimates and the
ranges are wide. However, this should not deter the assessment and
minimisation of actual consumption.

% As the Al industry booms, what toll will it take on the environment?,
h rdian.com/technol jun rtificial-intelligence-
industry-boom-environment-toll

% Artificial Intelligence Is Booming—So Is Its Carbon Footprint,
www.bloomberg.com/news/articles/2023-03-09/how-much-energy-do-ai-
and-chatgpt-use-no-one-knows-for-sure

40 www.tvo.fi/en/index/production/plantunits/ol3.html

71

https://www.tvo.fi/en/index/production/plantunits/ol3.html
https://www.bloomberg.com/news/articles/2023-03-09/how-much-energy-do-ai-and-chatgpt-use-no-one-knows-for-sure
https://www.bloomberg.com/news/articles/2023-03-09/how-much-energy-do-ai-and-chatgpt-use-no-one-knows-for-sure
https://www.theguardian.com/technology/2023/jun/08/artificial-intelligence-industry-boom-environment-toll
https://www.theguardian.com/technology/2023/jun/08/artificial-intelligence-industry-boom-environment-toll

Special Solutions

8.1.1 Energy Consumption

The energy consumption of artificial intelligence can be divided into
three parts:

Compilation and structuring of training material. Al cannot be
taught by inputting just anything. The computer-era principle of
"garbage in, garbage out" applies to Al training as well. Therefore,
training material must be compiled, organised, and cleaned up.
Since a vast amount of training material is needed, this task must
also be automated, which consumes energy.

Teaching Al. Neural network-based Al forms connections based
on training material. The amount of training material depends on
the Al's implementation technology, desired skill set, and precision
level. Similarly, the format of training material affects energy
consumption in teaching — for example, going through video or
image-based training material requires more power per unit of
information gained compared to processing text-based material.

For example, the GPT-3 model, which has 175 billion parameters,
is estimated by researchers to have consumed 1,287 MWh for
training and produced 552 tons of carbon dioxide emissions.*! In
the same article, it is also noted that Al energy consumption can
vary by factors of one hundred to even one thousand depending on
the infrastructure used. Similarly, the size of training data or the
generated Al model does not solely determine energy
consumption, as different Al models learn with varying energy
efficiencies.*

4 Carbon Emissions and Large Neural Network Training,
arxiv.org/abs/2104.10350

42 A Computer Scientist Breaks Down Generative Al's Hefty Carbon Footprint,
www.scientificamerican.com/article/a-computer-scientist-breaks-down-

generative-ais-hefty-carbon-footprint/

72

https://www.scientificamerican.com/article/a-computer-scientist-breaks-down-generative-ais-hefty-carbon-footprint/
https://www.scientificamerican.com/article/a-computer-scientist-breaks-down-generative-ais-hefty-carbon-footprint/
https://arxiv.org/abs/2104.10350

Green Code

Code Carbon has measured the energy consumption of popular
models developed for natural language generation and computer
vision learning.*® The differences are significant. Unfortunately,
standardised energy consumption data for learning is not available.
Hopefully, this issue will be addressed in the near future.

¢ Energy consumption during Al usage. When Al is employed to
perform tasks, such as interacting with humans or analysing X-ray
images, the utilisation of neural networks consumes energy. A
neural network operates similarly to any other software code,
where data is transferred from memory to the process for
processing and then back. The size and complexity of the network
lead to a substantial amount of this processing and data transfer.

For example, a single query with ChatGPT is estimated to consume
energy ranging from 1.7 to 2.6 Wh.** Official information regarding
daily query quantities is not available. Several sources have
estimated the daily query count to be around ten million, which
would result in a daily power consumption of 17 to 26 MWh.

Additionally, the energy consumption during usage should include
the loading of the Al model into the server's memory and other
preparatory steps for deployment. For instance, the estimated size
of ChatGPT's GPT-3 model is around 800 GB, so loading it is not
insignificant.*

In summary, it can be concluded that Al solutions can easily consume a
significant amount of energy, and this consumption often remains hidden
within cloud services. There are substantial differences in energy
consumption among different solutions. This, in turn, leads to an

4 mlco2.github.io/codecarbon/model _examples.html

ChatGPT'’s energy use per query,
towardsdatascience.com/chatgpts-energy-use-per-query-9383b8654487

4 en.wikipedia.org/wiki/GPT-3

73

https://en.wikipedia.org/wiki/GPT-3
https://towardsdatascience.com/chatgpts-energy-use-per-query-9383b8654487
https://mlco2.github.io/codecarbon/model_examples.html

Special Solutions

increasing responsibility for application developers in terms of Al usage
and solution selection.

8.1.2 Recommendations

The use of Al can significantly increase an application's energy
consumption by several magnitudes, so it's important to be cautious when
dealing with it. I recommend considering the following questions:

74

Is Al even necessary? Many problems are currently trendy to
solve using Al, even though they could be addressed with heuristic
or statistical methods. However, this might not be as
media-friendly and could, for instance, impact the valuation of
growth companies.

How should Al usage be constrained? If Al is indeed required
for some reason, it's worth contemplating how its usage should be
constrained. It's just a tool, not an end in itself. This involves
striking a balance between business needs, computational accuracy
or verifiability, and energy consumption.

Which Al model is suitable for the need? How is it procured?
Different AI models are suited for different needs, and the model
should be chosen based on the specific requirement. Opt for a
model that's already in use, and if it's a cloud-based solution, aim to
use a geographical location where electricity is produced as cleanly
as possible.

How is the model trained? Where is the training data sourced
and how is it prepared? The training data should align with
business needs, account for biases, and the creation process should
be as energy-efficient as possible. If the Al is for internal use or
doesn't require human interaction, there may be fewer potential
misuse concerns. In such cases, harmful content generated by Al
might be viewed differently than in a fully open solution.

How is the model configured? Al models contain numerous
parameters that modify their behaviour, some of which

Green Code

significantly impact energy consumption. Sometimes, the heaviest
computations don't necessarily yield the best results. Finding the
right balance requires experimentation.

Finally, I encourage everyone working with Al to share their own
experiences regarding the use of solutions and energy consumption.
There is currently a dire lack of information on these matters.

8.2 Blockchain and Cryptocurrencies

Blockchain is a technology that allows systems to generate and maintain a
shared database in a decentralised manner.** A blockchain consists of a
list of transactions that are distributed among participants, and its integrity
can be verified through cryptographic hashes included in each block. This
enables participants to trust each other without needing prior
acquaintance.

New transactions can only be added to the end of the blockchain. In
doing so, the current end of the list is recorded as a cryptographic hash
along with a timestamp and the transaction details. The new transaction
becomes the new head of the list. Transactions in the list are practically
immutable, as altering them would require recalculating the hashes from
the modification point to the end of the list.

Blockchain networks are typically managed by peer-to-peer software that
employs a consensus algorithm to decide which transaction gets added
next to the list and how it's validated.

In distributed systems, the blockchain is copied in its entirety to each
separate system. These systems communicate with each other to add new
transactions and use a consensus algorithm to agree on the next
transaction to be added to the list.

The first blockchain solution was introduced in 2008 alongside the launch
of Bitcoin. Bitcoin has been followed by a variety of blockchain-based

46 en.wikipedia.org/wiki/Blockchain

75

https://en.wikipedia.org/wiki/Blockchain

Special Solutions

currencies collectively referred to as cryptocurrencies due to the
cryptographic hash computation involved in their creation.

In addition to the aforementioned cryptocurrencies, blockchains are used
in smart contracts and non-fungible tokens (NFTs).*

8.2.1 Energy Consumption of Blockchains

Blockchain is inherently an energy-inefficient solution due to its
decentralised nature and the redundant storage of data. Its energy
consumption arises from the following actions:*

Execution of consensus algorithms - some consensus
algorithms are computationally intensive, and their energy
consumption may increase with the number of devices connected
to the network. For example, the proof-of-work algorithm used by
Bitcoin is based on the amount of computational work and
consumes a significant portion of the world's electricity.

Redundancy - since all systems related to the blockchain contain
the entire blockchain, the required storage space grows with each
new transaction. As the chain is immutable, it cannot be shortened
without compromising its integrity.

Additionally, each system handling the chain independently
performs the same computational operations with each
transaction.

Data transmission — systems dealing with the blockchain must
constantly communicate with each other to reach consensus on
the next transaction to be added. The growth in the number of
systems also increases the inter-system data transmission, generally

47

en.wikipedia.org/wiki/Non-fungible_token

8 An analysis of energy consumption and carbon footprints of cryptocurrencies
and possible solutions,
www.sciencedirect.com/science/article/pii/S2352864822001390

76

http://www.sciencedirect.com/science/article/pii/S2352864822001390
https://en.wikipedia.org/wiki/Non-fungible_token

Green Code

reducing the efficiency of data transmission. The efficiency is also
influenced by the topology of the network formed by the systems
— a denser network is more energy-efficient. Bitcoin's data
transmission illustrates the inefficiency: over 98% of the
transmitted data is redundant. In other words, less than 2% of the
transferred data is new.

Since blockchains will never achieve the same efficiency as centralised
systems, largely due to the decentralised nature of the solution and
cryptographic computations, it is important to carefully consider the use
of blockchain technology.

If blockchain does not provide a genuine advantage over a centralised
solution, its use cannot be recommended due to energy consumption.
Additionally, it should be noted that blockchain-based solutions are more
complex to design, implement, and maintain due to their decentralised
nature. On the other hand, decentralisation provides the solution with
better overall availability compared to a centralised system, which relies
entirely on the availability of a central component.

8.2.2 Energy Consumption of Cryptocurrencies

While cryptocurrencies are not typically part of applications, their usage
results in significant energy consumption, making them a key topic in the
context of blockchain technology.

The energy consumption of cryptocurrencies is based on the blockchain
consumption model discussed in the previous section. However, different
cryptocurrencies have implemented varying technical solutions that have
significant impacts on practical energy consumption.

77

Special Solutions

There are thousands of different cryptocurrencies*’, but their market
value drops rapidly after the top contenders. As of August 2023, the
largest cryptocurrencies by market capitalisation were:*

1. Bitcoin 578 billion USD
2. Ethereum 223 billion

3. Tether 83 billion
4. BNB 38 billion
5. XRP 34 billion

The market capitalisation of the tenth cryptocurrency on the list was only
$7 billion. The energy consumption of a cryptocurrency is influenced by
the chosen technologies and the currency's value — the higher the value,
the more people are interested in participating in cryptocurrency
mining.”!

The least efficient consensus algorithm is the proof-of-work used by
Bitcoin. In this algorithm, systems perform a certain number of complex
calculations to prove their participation in connecting the next
transaction. This work has no other value and its results are not used for
any other purpose. As the number of machines processing Bitcoin and,
consequently, computational power increases, the amount of work is
increased proportionally. This is done to ensure that no one — not even a
state actor — can provide 51% of the network's computational power and
thereby take control of consensus.

This directly affects the energy required by Bitcoin. Based on the August
2023 figures, its estimated annual energy consumption is about 107 TWh,

4 originstamp.com/blog/how-manv-cryptocurrencies-are-there

50 www.bankrate.com/investing/types-of-cryptocurrency/

31 Bitcoin boom: What rising prices mean for the network’s energy consumption,

www.cell.com/joule/fulltext/S2542-4351(21)00083-0

78

http://www.cell.com/joule/fulltext/S2542-4351(21)00083-0
http://www.bankrate.com/investing/types-of-cryptocurrency/
https://originstamp.com/blog/how-many-cryptocurrencies-are-there

Green Code

which is equivalent to the energy consumption of the Netherlands. A
single transaction consumes about 635 kWh of energy. Compared to a
credit card transaction, a Bitcoin transaction is approximately 430
thousand times less efficient.”> Additionally, it's important to consider the
environmental footprint of the hardware used to compute Bitcoin. This
hardware consists of highly specialised computational machines that may
not have reasonable opportunities for reuse.

The second-largest cryptocurrency, Ethereum, transitioned from the
proof-of-work model to the proof-of-stake model in September 2022. In
the proof-of-stake model, participation is based on the amount of
currency that an individual system is willing to stake as collateral to secure
a transaction. This change was truly transformative. The estimated annual
consumption of the proof-of-work model was about 83 TWh just before
the transition, and afterward, it was only 20 MWh. An individual
Ethereum transaction consumes approximately 0.03 kWh, which is
equivalent to about 40 credit card payments.>

Unfortunately, there is no equivalent data available for the energy
consumption of other major cryptocurrencies. The fourth-largest
cryptocurrency, BNB, uses an efficient proof-of-stake-authority model,
and the network's validation is closed — there are 21 servers responsible
for verifying new transactions.> In May 2022, the energy consumption for
a single transaction was estimated to be 0.008 Wh, which is less than the
energy consumption of a credit card payment.*

As evident from the above examples, the energy consumption of
cryptocurrencies varies significantly from one currency to another.

52 digiconomist.net/bitcoin-energy-consumption

53 digiconomist.net/ethereum-energyv-consumption

5 www.adan.eu/en/publication/blockchain-protocols-and-their-energy-

footprint/

5% opentaps.org/2022/03/24/estimating-the-energy-impact-of-the-binance-

smart-chain/

79

https://opentaps.org/2022/03/24/estimating-the-energy-impact-of-the-binance-smart-chain/
https://opentaps.org/2022/03/24/estimating-the-energy-impact-of-the-binance-smart-chain/
https://www.adan.eu/en/publication/blockchain-protocols-and-their-energy-footprint/
https://www.adan.eu/en/publication/blockchain-protocols-and-their-energy-footprint/
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption

Special Solutions

Unfortunately, the inefficiency in energy use is not reflected in the
popularity of Bitcoin. We are wasting a significant amount of energy —
both fossil and clean — on a currency largely used for speculation.

If you own Bitcoins, the most environmentally responsible action is to
leave them permanently in a cryptocurrency wallet. Selling them creates a
new energy-consuming transaction, and the buyer will likely put the coins
back into circulation. Another question is whether individuals can
genuinely afford to support climate efforts with their Bitcoin holdings,
which can be substantial.

Furthermore, I encourage you to consider the rationale behind
cryptocurrency investments. There are few practical use cases, such as
using cryptocurrencies as a means of payment; it's mostly about
speculation. If you do want to engage with cryptocurrencies, explore their
energy consumption aspect as well.

8.3 Internet of Things

The Internet of Things (IoT) refers to systems that enable devices to be
remotely monitored and controlled based on the data they automatically
generate, using an internet connection.”® It also encompasses concepts
like the Industrial Internet and smart homes, which are applications of the
Internet of Things.

The data produced by the Internet of Things is aimed to be intelligently
processed into actionable structures, such as transforming vast amounts of
real-time analytics into meaningful metrics and derived status updates.

The number of IoT devices connected to the internet was estimated to be
14.4 billion in the year, and it's projected to grow to 29.7 billion units by
the end of 2027. The average estimated annual growth rate is 16%.>

% en.wikipedia.org/wiki/Internet of things

57 State of IoT — Spring 2023,
iot-analytics.com/product/state-of-iot-spring-2023/

80

https://iot-analytics.com/product/state-of-iot-spring-2023/
https://en.wikipedia.org/wiki/Internet_of_things

Green Code

Currently, machine-to-machine connections are estimated to account for
about half of the connections of internet-connected devices.®® Smart
home devices constitute the largest segment in connections, while
internet-connected vehicles are the fastest-growing segment.

In addition to this, we must also consider I0T devices in closed networks,
such as sensors operating within factory networks. Altogether, the
number of devices has grown so large that even small changes are
significant in terms of energy consumption.

8.3.1 Energy Consumption

Typical IoT devices, such as various sensors, are designed to be
energy-efficient. They can be powered by primary or secondary
(rechargeable) batteries. For example, a sensor could be embedded in a
concrete casting or enclosed within a wall to monitor humidity. In such
cases, it's important to consider whether the device's battery needs to be
replaced every year or every ten years.

On the other hand, if a sensor receives power from a measurable device,
energy consumption in design is no longer as significant a factor. The
value of the information obtained from the devices is so substantial that
energy consumption is not practically significant, unless it leads to the
aforementioned manual work.

The amount of energy consumed by IoT sensors can be adjusted using the
following parameters:

e Sampling frequency - how often the device takes
measurements. Does it meter instantaneous measurements or
trends over time? Or does the device only monitor events that
exceed a certain threshold?

8 Cisco Annual Internet Report (2018—2023) White Paper,
www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html

81

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

Special Solutions

e Data transmission channel — devices can connect to the Internet
in various ways, such as using WLAN or mobile networks.
Additionally, home automation employs protocols like Zigbee and
Z-Wave. As discussed earlier, there are significant differences in
energy consumption among these networks. For instance, the
mentioned home automation protocols are considerably more
efficient than WLAN.

e Data transmission frequency — whether data is sent to the
recipient with each sampling or if multiple samples are combined
into one packet for transmission. This approach saves energy
related to data transfer, such as opening and closing
communication channels. However, it sacrifices real-time
capabilities. The device may also become more complex, and
storing samples might require additional storage space, increasing
the emissions generated during manufacturing.

e Sample size — how much information is included in each sample.
This significantly affects data transmission consumption between
the device and the receiving system. It might be reasonable, for
instance, to compress a sample before transmission if data transfer
consumes more energy compared to processing.

These parameters are closely tied to the nature of the measured process
or variable and the use case. It is of primary importance to choose the
right system with its devices and sensors — only after that should one start
considering energy consumption control.

The data obtained from sensors needs to be stored, interpreted, and
analysed. It might require filtering, and eventually, conclusions can be
drawn from the resulting information, either by machines or among
humans. This process also consumes energy, and consumption increases
proportionally with the amount of data being processed.

It's a good idea to consider data retention periods and, where possible,
use various solutions that reduce the amount of data, such as time series
databases that thin out data towards the past. These can be used to

82

Green Code

perform analyses of the present while preserving historical averages, for
example, to detect anomalies.

It's also important to remember that unused data is waste. If business
operations do not require tracking a particular aspect at the device level,
it's sensible to consider a different approach to solving the issue rather
than storing sensor data year after year just to be on the safe side.

8.4 Data

All of the aforementioned solutions generate and consume vast amounts
of data. In addition to these, data is produced through analytics,
instrumentation of application operations, and tracking human activities.
Moreover, people continuously generate data through photos, videos, and
texts, often using various social media services. Similarly, the generation,
usage, and transfer of this data create additional analytics data.

Data is collected from practically every electronic aspect of our
surroundings. We talk about data streams flowing into data lakes. From
there, data is pumped into processing to derive business-related insights.
This arrangement sounds almost poetic, and when properly leveraged, it
indeed offers a competitive edge to data-centric companies.

However, if a company doesn't handle its data correctly or collects
entirely irrelevant data, waste is created. Data collection frequency might
be too high, data is collected and stored in inefficient formats, or
information is retained unnecessarily for too long.

Furthermore, applications produced by companies generate, transfer, and
consume more data from year to year; in other words, the data intensity
of applications increases. The accuracy of device sensors grows, leading
them to produce more data at once—for instance, the file size of mobile
phone images increases alongside the growth in camera sensors’
megapixels.

User habits in applications also change, and an increasing portion of
global communication relies on videos, which have significantly poorer

83

Special Solutions

information density compared to images or text. In this context,
information density refers to the amount of conveyed information relative
to the amount of transferred data in bytes. Similarly, each user wants to
consume data at their own pace, rendering broadcast transmissions
ineffective. Instead, data is sent to each user individually in unicast. This is
why streaming movies and TV shows over the internet is much less
efficient than broadcasting them over a terrestrial network.

All of this leads to an increase in the amount of data and its transmission.
And because data accumulates by nature — it's stored rather than deleted
— its growth is continuous and regrettably rapid.

8.4.1 Global Scale

Global data volumes are enormous, and the annual growth is staggering.
According to IDC's estimate, in 2018 there were 33 zettabytes of data, and
this amount is projected to grow to 175 zettabytes by 2025.° A zettabyte
(ZB) is 10* bytes or one billion terabytes.*

In the same IDC report, it is projected that a significant portion of data
storage will shift from endpoint devices to centralised data repositories,
such as data centres and the cloud. However, data generation still
primarily occurs on endpoint devices, even though the creation of data in
the centre and edge — on the network or in distributed servers — is also
increasing slightly. This, in turn, leads to growing data transfer
requirements between endpoint devices and centralised solutions.

According to the report, consumer-generated data accounted for 47% of
all data in 2017 and is projected to steadily decrease to only 36% by 2025.
The remaining data is generated by businesses.

% The Digitization of the World From Edge to Core,
www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-
dataage-whitepaper.pdf

60 en.wikipedia.org/wiki/Byte

84

https://en.wikipedia.org/wiki/Byte
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Green Code

Unfortunately, there is no statistical information available on the energy
consumption of data storage, and various estimates are outdated and
include both storage and data transfer costs. Data transfer was discussed
earlier in this book, and data transfer volumes will be addressed below.

In the evaluation of storage, calculations are based on formulas that use
the average capacity of storage media — either hard drives or SSDs — and
the energy consumed by the devices.®® As of 2020, the consumption of
hard drives is 0.65 watt-hours per terabyte-hour (storing a terabyte for an
hour), and for SSDs, it's 1.2 Wh/Tth. This can be used to calculate an
annual consumption of 5.7 kWh/Tta and 10.5 kWh/Tta.

IDC's estimate for the global total data volume for the writing year of this
chapter — 2023 — is 100 zettabytes, which would mean that storing this
data once would require 570 terawatt-hours (TWh) of energy per year,
according to the aforementioned calculation.

Global annual electricity consumption is 25,530 TWh.** Therefore, the
global electricity consumption of data would already account for 2.2% of
the world's consumption. And this is for data stored only once and fully
optimised, without any transfers or processing. Thus, it can be concluded
that the calculation formula cannot hold true and significantly
overestimates the actual energy consumption.

Additionally, data replication should be considered. Especially in cloud
services and data centres, multiple copies or replicas of data are stored as
a precaution to ensure data availability in the event of hardware failures.

o www.cloudcarbonfootprint.org/docs/methodology/

2 World Energy & Climate Statistics — Yearbook 2023,
vearbook.enerdata.net/electricity/electricity-domestic-consumption-
data.html

85

https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html
https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html
https://www.cloudcarbonfootprint.org/docs/methodology/

Special Solutions

The exact numbers of replicas used in cloud services are not clear, but
according to one estimate, they range between one and six.*

Global monthly data transfer was estimated to be 180 exabytes in 2019
and increased to 230 exabytes in 2020, according to a UNCTAD report.**
By 2026, data transfer is projected to be approximately three times that
amount, reaching 780 exabytes. An exabyte is 10 bytes, or one million
terabytes. The annual data transfer in 2019 was 2.2 zettabytes, which
seems quite small compared to IDC's estimate of 40 zettabytes for the
total data volume in the same year.

In the same report, it is estimated that mobile data transfer will grow
faster than fixed network data transfer due to the increase in the number
of mobile phones and IoT devices. By 2026, mobile data transfer is
expected to account for about one-third of all data transfer.

Consumer data transfer will continue to grow based on both increased
device usage and the intensity of data usage. According to an Europe
focused report by Arthur D. Little, the time spent online is expected to
level off at around three to four hours per day in developed countries, but
usage intensity will continue to grow for several reasons:*

e Improvement in video resolutions
e Wider use of videos on social media

e Expansion of internet usage into new scenarios — such as virtual
meetings, attending concerts, or shopping

65 Cloud Carbon Footprint Replication Factors,

docs.google.com/spreadsheets/d/1D7mIGKkdO1diPoMVmIXRmzA7_4tTiGZL
YdVbfe85xQM/edit#gid=735227650

¢ UNCTAD Digital Economy Report 2021: Cross-border data flows and
development: For whom the data flow,
m/files/official-

6 The Evolution of Data Growth in Europe,

www.adlittle.com/en/insights/report/evolution-data-growth-europe

86

https://www.adlittle.com/en/insights/report/evolution-data-growth-europe
https://unctad.org/system/files/official-document/der2021_en.pdf
https://docs.google.com/spreadsheets/d/1D7mIGKkdO1djPoMVmlXRmzA7_4tTiGZLYdVbfe85xQM/edit#gid=735227650
https://docs.google.com/spreadsheets/d/1D7mIGKkdO1djPoMVmlXRmzA7_4tTiGZLYdVbfe85xQM/edit#gid=735227650

Green Code

e Use of AR and VR solutions
e Growth in content generated by artificial intelligence

The biggest driver of growth is video consumption. According to the same
report, video consumption accounted for 60% of mobile data transfer in
2022, and this share is projected to increase to 72% by 2030. In the same
period, individual users' total mobile data transfer is estimated to grow
from 15 gigabytes per month in 2022 to 75 gigabytes per month, with an
annual growth rate of 25%. This means that in 2022, videos consumed an
average of nine gigabytes of mobile bandwidth per month, and by 2030,
the estimated data volume of videos is expected to be 54 gigabytes.

Similarly, through fixed connections an average of 225 gigabytes were
transferred per month — per household, not per individual. It is estimated
to increase to 900 gigabytes by the year 2030, an annual growth of 20%.
Videos make up 67% and 74% of this data, which means that 151 GB of
videos were transferred in 2022 and 666 GB in 2030.

While the energy efficiency of data transfer is expected to improve with
the adoption of new technologies, it will not be possible to solely address
the growth in the amount of transferred data without a revolutionary
breakthrough. Hopefully, during this time, transitioning to renewable
energy sources will significantly reduce the carbon dioxide emissions
from the energy used by networks.

Changes in consumer behaviour and data usage are not the only drivers of
data growth. Many rising solutions, such as artificial intelligence or online
advertising, require significant amounts of data to function.

Training data for artificial intelligence is massive, and as the precision
requirements of Al systems increase, dataset sizes continue to grow.
Similarly, training data for AI needs to be constantly replenished,
otherwise Al systems would gradually fall behind current events or
wouldn't be able to generate images or videos following the latest artistic
trends.

87

Special Solutions

For instance, the size of the Internet archive and data collection produced
by Common Crawl was 380 terabytes in October 2022.% This archive
constitutes approximately 60% of the training data for the GPT-3 artificial
intelligence model underlying ChatGPT.

Despite some partial discrepancies in the numbers, all these figures are
significantly large, and each of them is growing substantially from year to
year. Managing data volumes is one of the greatest challenges in
sustainable IT, as data transfer, storage with replication, and processing
contribute a significant portion of the energy consumption in the IT
industry, and consequently, emissions as well.

Summarised

T Apart from basic application code, energy-consuming solutions
like artificial intelligence (Al) and blockchain must be addressed
separately due to their varying energy consumption. While they
offer benefits, their energy impact must be understood.

2 Al has gained prominence with applications like ChatGPT and
DALL-E, but it consumes substantial energy. Gathering training
material, teaching, and usaging Al all contribute to its energy
consumption.

3 Blockchain's decentralised nature and redundancy make it
energy-inefficient. Cryptocurrencies also consume significant
energy, with different currencies using varying technologies
leading to differing energy consumption.

% en.wikipedia.org/wiki/Common_Crawl

88

https://en.wikipedia.org/wiki/Common_Crawl

Green Code

4 10T devices generate data in a decentralised manner, and their
energy consumption depends on several factors — such as
sampling frequency and data volume, transmission method, and
post-processing. The increasing number of [oT devices raises
concerns about energy usage.

5 Data production, transfer, and consumption are rapidly
increasing. Global data volumes are immense, with data
replication adding to energy usage. Trends like video
consumption and resolutions — along with new solutions like Al
and blockchain — contribute to data growth and energy
consumption.

89

9 Impact Assessment

The optimisation methods mentioned in the two previous chapters and
adjustments for components consuming a lot of energy may help a little or
a lot, depending on the nature and internal structure of the software.
Some of them may be very easy and others extremely difficult to
implement. This chapter discusses two different ways to assess changes
and costs in order to make informed decisions about beginning a change
project.

A monetary assessment is usually the most effective because with
sufficiently large and credible numbers you can always get the attention of
top management. Both CFOs and CEOs largely understand the world
through numbers, and if you can get them on board with an idea, many
obstacles have already been overcome. Unfortunately, there is no general
formula for monetary changes, only the basics.

In addition, applications are implemented to cater for different needs.
The optimisation of a solution used infrequently cannot be invested in to
the same extent as an application that is delivered to the masses and used
daily. The daily users or usage time of an application can be used as a
multiplier to estimate the impact.

Since the execution time of software correlates strongly with the energy
used — regardless of the implementation language — it can safely be said
that improving the execution time reduces the energy consumption or
costs of cloud services in the same proportion. The savings from such an
operation can easily be converted into euros or dollars. Keep in mind that

90

Green Code

the savings accumulate every year if the software usage remains the same.
And if usage increases — as it usually does — the accumulated savings
increase accordingly year by year.

Some savings come from postponing expensive changes, such as
duplicating or load balancing the servers. When a service is able to serve
more concurrent users, it may remain simpler for a longer time than a
solution that can serve fewer users.

9.1 Impact vs. Workload

If it is difficult to quantify the effects of a change, it can also be
approached using a 2x2 matrix approach, as shown in Figure 3 below. The
time required for each proposed change is evaluated on a scale of small to
large, and similarly, the energy savings or impact of the change is
evaluated on the same scale.

Each organisation can decide for itself what a small or large workload or
impact means. Businesses have different needs and circumstances, so no
general metrics can be given.

For example, if a company operates in an energy-intensive industry such
as metal processing or concrete production, one percent energy
consumption decrease in the main process through software may be such
a large reduction that the energy used by the application is of secondary
importance. On the other hand, a decrease in energy consumption for a
company that is entirely based on software may be huge for them, even if
it may be way smaller than the reduction in the previous example.

The impact of the change must be genuinely substractional, that is, the
same reduction cannot be achieved without the change, and the change
does not happen in any case — otherwise the organisation would be
shooting itself in the foot or engaging in greenwashing. The combined
reductions of several potential changes may not necessarily be the sum of
the individual reductions of each change. It is important to consider this
when deciding on changes.

91

Impact Assessment

Since application developers are also only human, they may have different
types of preoccupations and biases that either favour or oppose certain
types of changes. Sometimes such biases are clear to the person
themselves, but many of them are also unconscious. Thus it is a good
practice to ask for at least two evaluations from different experts on the
same change. If their thoughts are seriously mismatched, it will certainly
lead to an interesting discussion that results in more refined thinking
about the matter.

Below is a simple 2x2 matrix and various decision examples based on
estimated workload and impact.

Impact

Large | % »® ®
Do right away Do soon Split into parts

Combine with a larger change
x

»®
Think for a
moment

Implement as part of

other tasks Do notdo it
Small | = t
Small Large

Amount of work

Figure 3. Assessing workload and impact on a 2x2 matrix.

9.2 Impact vs. User Experience

Simply evaluating the impact of a change in terms of the workload of
application developers is not enough, because the change may have larger
impacts beyond just the amount of work and cost; such as a change in
user experience. If this is not the case and the change is purely technical,
the following 2x2 matrix is not needed. If, on the other hand, the user

92

Green Code

experience changes, it should be evaluated accordingly together with the
expected impact.

In this 2x2 matrix, the user experience can degrade or improve. It is easy
to assume that measures taken to reduce energy consumption will
degrade the user experience — they are reductions, which, as a word, has
a negative connotation. But if a change, for example, decreases the
amount of information required from the user or otherwise simplifies the
use of the service, the change can be significantly positive.

The 2x2 matrix should not be left to the developers to fill out, because
they may not have the expertise or perspective to evaluate the change
with regards to user experience. Instead, their evaluation of the change is
often done by gut feeling or reflects the difficulty of changing the user
interface.

Secondly, properly evaluating the change also provides good starting
points for communicating the change to users. Users will react differently
when they notice that the quality of videos has declined compared to also
reading a message about the change and its impact on the environment.

Impact
Large | % =% ®
Ponder Do now Do now
carefully
Do soon Combine with a larger change
x x
x ®
Ponder carefully Do soon
Implement as part
Do not do it Do notdo it of other tasks
Small | % ® x
Worsens Improves

User Experience
Figure 4. Assessing change of user experience and impact.

93

Impact Assessment

Summarised

| Measure the changes with the credible numbers to capture the

attention of the management, especially CFOs and CEOs who
make decisions based on figures. Consider calculating annual
savings as a basis for decisions.

Evaluate changes using an impact vs. workload matrix, based on
workload and energy savings. Tailor the matrix definitions of
"small" and "large" according to the organisation's needs.

& Assess changes using a user experience change vs. workload

matrix, taking into account improvements or deteriorations in
user experience. Also, consider the need for communication
and users' anticipated reactions in the evaluation of changes.

By reducing software execution time, energy consumption is
decreased, and cloud service costs are likewise reduced; the
savings can be easily quantified.

9%

10 Carbon Neutrality

Carbon neutrality is a public goal for many organisations. It has an impact
on the procurement of organisations, whose carbon footprint of
purchased services is calculated as part of the buyer's footprint. As the
carbon footprint will be included in IFRS reporting in the future for all
three scopes, the carbon footprint of all companies following IFRS and
their subcontractors must be calculated in a few years at the latest.

It is easiest if the organisation is carbon neutral and the footprint is zero.
Carbon neutrality is typically achieved in three stages:

1. Calculate the carbon footprint of your own operations. It is
generally calculated according to the GHG Protocol® and is
divided into three scopes:

a. Scope 1 — Emissions on site due to the company's own
operations.

b. Scope 2 — Indirect emissions related to purchased energy,
such as emissions from electricity and heat production.

c. Scope 3 — Emissions from the use of sold products, the
procurement of goods and services, in other words indirect
emissions. This category is divided into fifteen categories,
from which the most important ones for the company's
operations are chosen for the emissions calculation.

% Greenhouse Gas Protocol, shgprotocol.org/

95

https://ghgprotocol.org/

Carbon Neutrality

2. Minimise the carbon footprint. This is actually the most
important stage of the process. Once the different components of
the footprint are known, various actions can be targeted at them.
For example, reducing fuel consumption by optimising logistics,
cutting business travel by switching to video calls, or allowing
continuous remote work. It is advisable to start with the biggest
emission sources that can be affected. For example, changing the
energy source for the office's air conditioning or heating may not
be possible in rented offices, even if the energy consumption is
significant.

Minimisation should be done in several phases, as not all changes
can be executed at the same time. Typically, the calculation is done
annually, so the appropriate time frame for minimisation is also
one year. The effects of the previous year's actions can be assessed
and, based on the information, the next minimisations can be
planned. Leading companies have been minimising for over a
decade and still have opportunities left to reduce their own carbon
footprint.

3. Compensate for emissions that cannot be minimised. There
are several compensation methods available. The main idea is to
remove carbon dioxide from the atmosphere to compensate for
the amount emitted. As a result, the operation is theoretically
carbon neutral.

Compensation has been accused of being an indulgence and there
are operators of varying quality in the market. For example in
Finland, several parties have become aware of this problem and
there will be more guidance and, at some point, requirements for
the selection and implementation of compensation services. The
advantage of compensation is that it sets a price for emissions,
which is reflected in the company's profit and loss statement.

From the perspective of carbon footprint calculation, software falls under
the third scope and the calculation of its carbon footprint as part of the
company's carbon footprint is at least right now the company's own

96

Green Code

decision. Some industrial companies, for example, only calculate scopes 1
and 2 in their own footprint. In the ICT industry, practically all emissions
are in scope 3, unless the company in question is a data centre or
teleoperator.

The carbon footprint of software can be divided into two parts: the
implementation and maintenance of the software, and the carbon
footprint of the energy and hardware used by the software.

10.1 The Footprint of Implementation and
Maintenance

The carbon footprint of implementing an application is largely equivalent
to that of normal office work. Software developers use computers in the
same way as other office workers. In addition, the carbon footprint of
systems supporting software development, such as version control, testing
servers, ticketing, and the build pipeline, should be taken into account.

Projects may share resources, and the carbon footprint of these resources
should be divided according to usage. This may not be easy, so various
estimates are also acceptable. It is important to ensure that the carbon
footprint is divided as a whole, but not multiple times (double counting).

As 1 previously stated, the discussion of the carbon footprint of the
software developer versus the carbon footprint of the application is
largely meaningless. Both should be reduced, and these reductions are
seldom connected to each other. For example, a software developer riding
a bicycle to work is unlikely to reduce their ability to write green code.
On the contrary; when muscles do more work, the brain gets more
oxygen.

10.2 The Application Footprint

The carbon footprint of an application consists of the energy used and the
lifecycle emissions of the required hardware. Sometimes energy usage of a

97

Carbon Neutrality

device is included in its lifecycle, so it is important to be meticulous to
avoid double counting.

The energy consumption of an application is largely correlated with the
amount of time the application is spending, regardless of the
implementation language. So, an application performing faster is also
more energy efficient. Similarly, the amount of data transferred affects the
carbon footprint according to the transmission path. This book is written
to improve the efficiency of applications and to avoid endless recursion,
so earlier topics will not be covered again in this chapter.

10.3 Code from Finland Carbon Neutrality
Label

In early 2022, Code from Finland®® launched the carbon neutrality label®,
which software companies can use to announce that they have zero
carbon footprint. It should be noted that the symbol covers the carbon
footprint of software implementation and maintenance. The carbon
footprint of the produced software itself is taken into account only if it is
part of the company's operations — for example, an application offered by
a SaaS service provider is included in their carbon footprint. Similarly,
applications produced by software consulting firms are included in their
clients' carbon footprint.

One of the purposes of the symbol is to help the buyers of software to
make more climate-friendly purchasing decisions. Code from Finland
hopes that one day the symbol will be unnecessary, because all software
development will be carbon neutral.

%8 codefromfinland.fi/

9 codefromfinland.fi/en/symbols/carbon-neutrality-label

98

https://codefromfinland.fi/en/symbols/carbon-neutrality-label
https://koodiasuomesta.fi/

Green Code

Summarised

| Carbon neutrality is a goal for some organisations and its
importance most probably grows in the future. Neutrality target
impacts procurement and reporting, and it includes three areas:
emissions from operations, purchased energy, and indirect
emissions.

2 Carbon neutrality is achieved through calculation, reduction,
and offsetting of emissions. Reduction focuses on key emission
sources and is done annually. Compensation methods vary in
quality, and careful consideration is needed when choosing
them.

3 Software carbon footprint falls under Scope 3. The footprint
covers both implementation and maintenance, as well as energy
and hardware usage.

4 Code from Finland has introduced a carbon neutrality label for
Finnish software companies. The label covers the carbon
footprint of software implementation and maintenance, aiming
to support climate-friendly software procurement.

99

11 Recommendations

This chapter presents brief recommendations for the main stakeholders
involved in green software development. Each recommendation is not
intended to be followed literally, but the situation should be assessed
through one's own circumstances. There is no one-size-fits-all solution.
The closest one fitting to everyone is to stop using proof of work
cryptocurrencies, as they consume an enormous amount of energy in
proportion to the benefit.

11.1 For Software Developers

The written source code and, as a result, the finished software is as energy
efficient as its developers can and want to write efficient code. The
system requirements and constraints create certain frames for energy
consumption, within which the energy efficiency of the code can
manoeuvre. In principle, there is no upper limit to inefficiency, so it is
essential to develop energy-efficient solutions within such frames.

Developers can be motivated to be energy efficient through various
external mechanisms, but internal motivation is essential to achieve
permanent change.

Proceed as follows:

e Take the matter seriously and take action accordingly.

100

Green Code

Find out how your application consumes energy and identify the
best locations to implement energy-saving changes.

Minimise data transmission and storage needs.

Consider the reasonable use of libraries. Refactor unnecessary
code out whenever possible. Do not build unnecessarily complex
structures if using a simpler one can reach the same goal.

Consider the impacts of your changes and compare them to the
estimated workload and potential changes in user experience.
Consult other experts, such as product owners and UX designers, if
necessary.

Challenge product owners and designers when they propose new
features. Discuss actively with designers about their plans for
energy consumption. Have an open dialogue about objectives that
degrade energy efficiency.

If the implementation includes artificial intelligence or blockchain
components, familiarise yourself with their energy consumption.
Conduct your own measurements if information is not available. If
you are purchasing these as services, request energy consumption
information from the supplier and guidance on how to reduce the
solution's energy usage.

If you are a senior level developer, provide guidance to less
experienced developers and help them understand problems and
appropriate solutions.

Understand that not everything can be achieved and sometimes
inefficient code has to be written or left in place. There is no open
check for all changes. Do not get upset about this, instead focus on
the next changes.

Do not confuse your own carbon footprint with the carbon
footprint of the software you are implementing. They are two
different matters and there are separate, independent solutions for
both of them. Take everything possible into use.

101

Recommendations

e Extend the replacement cycle of your devices. Avoid replacing
them unnecessarily or choosing new devices without considering
the energy efficiency of their production, logistics, and usage.
Repair devices when feasible.

e Participate in the development of industry-wide solutions and in
the discussion of the energy efficiency of software. Share your own
experiences and ideas.

11.1.1 For Component Developers

If an application developer creates a component or library to be
embedded in other applications, the above recommendations apply
directly. In addition, it's important to consider the energy efficiency of the
component, especially if it's widely used.

For instance, SQLite™ is installed on all Android and iOS devices, Apple's
Mac computers, Windows 10 systems, and all widely used browsers.
Estimates of the number of databases run into the trillions. Therefore,
even small changes in energy consumption are significant as they multiply
with enormous coefficients.

Of course, not all components are as popular, but that shouldn't hinder
you from considering energy efficiency in your project.

Proceed as follows:
e Engage in active discussions about efficiency within the project.

e Ensure a coherent and project-wide approach to addressing energy
consumption and efficiency.

e Build a measurement system and conduct performance related
tests from one change to another. If the changes are substantial or
performance consistently declines, address the issue.

0 www.sglite.org/mostdeployed.html

102

https://www.sqlite.org/mostdeployed.html

Green Code

e Actively address changes in energy efficiency of the libraries used
by the component.

11.2 For Designers

The software is not just code, but its efficiency is also determined in the
design of the user-visible functionalities and their visual appearance,
sometimes even more than in the source code. Designers must also share
a similar responsibility for software energy efficiency as developers and
architects.

Proceed as follows:
e Take the matter seriously and take action accordingly.

e Understand both the business needs and the user's wishes. Try to
solve these potentially conflicting requirements efficiently.

e Minimise the user's chances of making mistakes. Design and write
the user interface as clear and straightforward as possible. Take
care of accessibility, as it reduces errors made by users with limited
mobility or other challenges.

e Think about what the most minimal solution would be. Challenge
the product owners and software developers when they propose
new features. Have an open dialogue about objectives that
degrade energy efficiency.

e Actively discuss the energy consumption of your designs with
software developers. Grow your understanding of the application's
functionality and figure out what is expensive and what is
economical in terms of energy consumption.

e Consider whether functionality can be partially or fully replaced
with instructions and images that guide the user. Design the
content to be as energy efficient as possible, while still taking care
of it staying informative and valuable to the user.

103

Recommendations

Try to eliminate problems that require new code entirely rather
than finding solutions to them. Not all problems can be eliminated,
but some can certainly be prevented.

Understand that the most energy-efficient solution is not always
feasible due to business reasons or user needs.

Extend the replacement cycle of your devices. Avoid replacing
them unnecessarily or choosing new devices without considering
the energy efficiency of their production, logistics, and usage.
Repair devices when feasible.

In addition, the book Sustainable Web Design mentioned earlier offers
many tips for designing more energy-efficient software.”

11.3 For Testers and Quality Assurance

After application developers, quality assurance and testers are the next
individuals who witness the software in action. At this stage, the software
hasn't yet reached end users, making it easier to implement changes. This
is why quality assurance and testing play a crucial role in ensuring the
software's energy efficiency.

Proceed as follows:

Take the matter seriously and take action accordingly.

Incorporate tests related to software energy efficiency. These tests
can be included alongside stress tests and performance
measurement tests.

Monitor changes in software energy consumption from one version
to another. Address sudden increases in consumption promptly in
collaboration with application developers. Similarly, share
information about long-term changes and engage in active
discussions about energy consumption.

T https:/labookapart.com/products/sustainable-web-design

104

https://abookapart.com/products/sustainable-web-design

Green Code

e Strive to identify waste as presented in this book within the version
being tested and report them to application developers or
designers.

e Design and build energy-efficient testing environments. Ensure
their proper use. Aim to use devices efficiently and maximise their
lifespan.

e Turn off all environments when not in use.

e Schedule resource-intensive load tests during periods of cheap
energy whenever possible.

e Consider appropriate testing frequencies for various automated
tests. Break down the testing criteria into multiple levels of
criticality and determine which level of tests should be conducted
at each stage of the application development process.

e If you're a senior-level tester, take care of less experienced testers
and help them understand how to promote energy efficiency
through testing.

11.4 For Software Companies

Software companies have great power to influence the energy used by
software, as the name of their industry implies, they are responsible for
designing and developing the software. To make an actual impact, upper
management must be aware of the matter and see the business
opportunity in producing green code. Hopefully, this book has helped to
convince you that eco-efficient coding is the future.

Proceed as follows:
e Take the matter seriously and take action now, not in the future.

e Train your staff to recognise the difference between efficient and
inefficient coding. This book can help with that.

105

Recommendations

e Look at the entire architecture and identify the right areas for
change — don't suboptimize.

e Ensure that your staff's hardware is efficient in terms of energy
consumption. Also, extend the life cycle of the devices and ensure
their proper recycling or reuse.

e Investigate the energy efficiency of the systems you produce and
search for improvement opportunities.

e Aim for carbon neutrality or at least minimise emissions
throughout your business.

e Evangelise the matter to your customers and partners. Demand
carbon-wise solutions from your partners. Replace them, if your
message does not seem to be getting through.

11.5 For Buyers

Purchasing environmentally friendly software will be increasingly
important and sometimes even critical in the future. It is worth changing
your own processes and thinking early on so that you are not caught with
your pants down when regulation comes into force.

If environmental considerations were taken into account in the purchase
of software — which is currently not done to a great extent — both the
planet and the company CFO would benefit. A more efficient software
consumes fewer resources, energy, servers, connections, and so forth,
which is a direct saving for the buyer of the software.

It is important to remember that buyers have a lot of power — according
to the golden rule: "he who has the gold, makes the rules."

Proceed as follows:

e Get carbon-wise digital partners - design, development,
maintenance, connectivity, and so forth. Demand implementations
that respect the environment from them and take this demand into

106

Green Code

account in your budgeting, too. Help them move in the right
direction.

Investigate how your digital solutions impact the environment and
adjust them as needed. Focus first on their carbon handprint and
then on their carbon footprint. But look at both.

Look at the entire value chain, don't sub-optimize. If necessary,
take the whole business network into account.

Don't greedily try to do everything at once. Make changes at a
reasonable pace so that you will endure through the whole
process.

Beat the drum and evangelise the issue.

Additional tips for procurement organisations:

Establish procurement criteria suitable for your organisation to
evaluate sustainability in general and carbon neutrality and green
coding in particular.

Adjust the weights or scoring of new and existing criteria according
to the values of your organisation.

Share your experiences with other buyers.

11.6 For Users

Typically, the energy consumption of applications begins with the user. If
the application has no wusers, it basically waits with low energy
consumption. It is worth approaching personal application use with
curiosity and thinking about whether I could do with less. Would I be
even happier if my mobile phone was not constantly stuck to my hand?

Are some of my repetitive tasks joyless and reminiscent of addiction? Am
I constantly spinning in social media, but not really getting anything out of
it? Identifying and breaking these harmful habits both improves mental
health and reduces the energy consumption of the applications.

107

Recommendations

And last but probably most importantly: reduce watching videos. About
80% of internet traffic is videos and if their information content were read
as text, the energy reductions would be significant. Be wary of apps that
push videos to you in an endless loop.

Proceed as follows:

108

Identify the time you spend with applications. Various screen time
counters are helpful here. Reduce application use if possible. The
most energy-efficient application is an unused application. If you
feel bad or inadequate from an application, such as social media,
stop using it and delete the application. Don't return.

Reduce watching videos. Think about whether you can read or tell
the same thing in text instead of a video or picture. Don't fill all
communication with memes and animated GIFs, but use them

sparingly.

Decrease the frequency of updating your devices and take good
care of them. Buy devices that are promised software and security
updates for a long time. Consider repair instead of replacement,
especially replacing the battery can give several good years to a
phone or laptop.

Connect your devices to a fixed network if possible, especially
mobile broadband should be changed to fixed. Prefer WiFi to
mobile data transfer, and also prefer 5G to 4G.

Adjust your device's display to turn off earlier and remove
screensavers — a power-off or dark screen is more eco-friendly.

Don't use bitcoin and similar energy-wasting solutions. Remember
that not all digital solutions are automatically better than analog or
previously used ones.

Instead of using apps, use small idle moments for dreaming.
Tolerate boredom.

Green Code

e Bring your friends and acquaintances to participate in the change.
But don't pressure or preach, but attract them through positivity.

Summarised

| [nthe development of energy-efficient solutions, it is crucial to
approach the challenges of energy consumption individually and
avoid using a one-size-fits-all solution for everything.

2 Developers, designers, testers, software companies, and buyers
each have their roles in creating energy-efficient software. Each
group should take their responsibilities seriously, collaborate,
and actively participate in ecological practices.

& All parties should prefer energy-efficient devices and focus on
extending their lifecycle. When using devices, practices that
consume as little energy as possible should be followed.

4 Application developers should actively advocate for energy
efficiency, develop industry-wide solutions, and generally adopt
a positive mindset towards change.

109

12 Summary

The energy consumed by IT solutions has increased significantly in recent
years and this has been recognised only recently. The carbon handprint of
software has been generally very positive — in other words, they have
succeeded in transitioning other processes to be more efficient and emit
less greenhouse gases. In order to achieve global goals in combating
climate change, it is necessary to consider the energy consumption of IT
solutions, too.

Currently, I'T industry trends unfortunately lead in the wrong direction in
terms of energy efficiency and the industry is not regulated in terms of
energy consumption. These are sure to change in the future. At the
moment, the industry is gathering expertise in producing green code and
there are various programs on the subject going on. There is still little
progress, but the development is accelerating.

The energy consumption of modern applications can be roughly divided
into three separate parts: the consumption of services operating in data
centres and their internal network, the energy consumed in transmitting
data from the data centre to the user's device, and the energy used to
process and display the data on the device. Each application is individual
and the details and the weights of the model vary from application to
application.

At the moment, there is unfortunately very little measurement data
available on the efficiency of software. It is not yet possible, for example,
to compare the efficiency of your own application to similar applications

110

Green Code

or to the industry average. There is also no equivalent standard for the
energy efficiency of IT devices as there is for home appliances and
televisions.

However, energy consumption can already be minimised without
measurements. Optimising the functionality of applications, minimising
data volumes and eliminating unnecessary items all lead to better energy
efficiency.

The energy consumption of applications can be analysed using the
concept of waste. Identify features or actions in the application that do
not produce value but only consume energy. Removing these sources of
waste will improve the performance of the application. There are several
types of waste. The types identified in this book are not necessarily a
complete list — instead their number will increase as understanding and
experience in energy efficiency increases.

Removing waste is not just the task of application developers, although
some waste is technical in nature. Typically, there are business reasons or
user experience needs behind the waste. These matters cannot be
evaluated solely from the perspective of energy consumption, but rather,
measured decisions and compromises must be made.

This book presents a range of solutions for improving efficiency and
eliminating waste. Once again, it must be stated that solutions must be
applied in the context of the application and no single solution is
sufficient. Because there are business reasons behind developing
applications, not everything can be changed at once. Two different
matrices are presented in this book for assessing impact.

Artificial intelligence, blockchain and cryptocurrencies, IoT devices, and
data in general are increasing energy consumption and emissions in the I'T
industry. Overall, addressing energy usage across these emerging
technologies is crucial to ensure sustainable IT practices and reduce
environmental impacts.

In addition to the energy efficiency of the application, it is also worth
calculating and minimising the carbon footprint of software development.

111

Summary

To this end, Code from Finland has published a carbon-neutrality symbol.
By following the criteria for the symbol, you will get good guidelines for
handling your own carbon footprint, even if you are not applying for the
symbol.

Recommendations have been listed for various stakeholders — software
developers, designers, users, software companies, customer companies
and their professional buyers. It is essential in all of these
recommendations that action must be taken immediately.

112

13 Thank Yous

The idea of writing this book has been on my mind for a while, first as
quite shapeless and finally as more analytical thoughts. Eventually, the
book had to be written because the idea no longer gave me peace.

I became interested in green coding based on discussions held in the
board of Code from Finland. Together with a member of the board, the
CEO of Hiottu Ltd. Satu Lapinlampi, we began to investigate the situation.
Satu's cheerful yet very goal-oriented style of advancing environmental
issues has been energising to watch. Without her, I would not be on this
journey.

The first excellent summary for us was provided by Lotta Toivonen, an
expert at Sitra — the Finnish Innovation Fund, and I have exchanged
thoughts several times with Lotta during the process. Another significant
step forward was a seminar organised by Tieke — Finnish Information
Society Development Centre, where I was able to speak about the matter
for the first time and get to know other people who were having similar
thoughts. Huge thanks to Tieke's Executive Director, Hanna Niemi-
Hugaerts, for this.

Through these connections, I got to know Professor Jukka Manner of
Aalto University, whose thoughts about simpler and therefore more
efficient software resonated very strongly with me. Similarly, Professor
Jari Porras of LUT University has been an extremely important discussion
partner on these matters.

13

Thank Yous

I finally was asked to join the steering group of Tieke's Green ICT Project
and ended up being its chairman. Fortunately, I got to know Project
Manager Antti Sipild, who has been a valuable help in many discussions
and linking to experts in the field.

Jusu Toivonen, who is leading the sustainability efforts at ski resort
Rukakeskus Ltd., has served as an inspiration in how environmental
matters can be significantly improved with determination, long-term plans
and persistence. The conversations with him have given me confidence
that [am on the right path.

I discussed various ideas and developed my own expertise in the field of
responsibility with Anna Savisaari, a responsibility lead at Exove. Without
these discussions, I would never have come to write this book.

Conversations with Exove's Sales and Marketing Director, Paivikki
Kyykkd, led me to the idea of waste. This concept allowed me to jump
over the last hurdle — I had long been wondering how to move the issue
forward analytically, but without measurement data. The concept of
waste, borrowed from Lean, provided a liberating approach to advance
the eco-efficiency of code without continuous measurement.

Special thanks to the pre-readers of this book, from whom I received a
significant number of new thoughts and comments to add to the text. The
pre-readers were Valohai Ltd. CTO Aarni Koskela, Exove Ltd. CTO Kalle
Varisvirta, Rebase Ltd. Senior Software Engineer Tommi Sinivuo, and
Exove Design Ltd. Designer Katri Pakula. Exove's Growth Marketer, Essi
Rostedt, proofread and corrected the Finnish text, and Data Consultant
Vivi Mattsson, Developers Ilse Tervonen and Koray Diindar, and Principal
Tech Lead Rihards Steinbergs proofread and corrected the English text.

The second edition pre-readers were Kalle Varisvirta and TietoEvry’s
Senior Software Architect Tommi Lehtinen. Exove’s Growth Marketer
Jessica Holmberg proofread and corrected the Finnish text, and
Developer Panajis Rantala from Exove proofread the English version.

Without you, this book would be significantly shorter and of lower quality
in general.

14

Green Code

It goes without saying that I am responsible for all possible errors.

15

14 Feedback

I am pleased to receive feedback and new ideas for producing green code.
The matter is important to both the development of the IT industry and
decelerating climate change. Further, the topic is very important to me
and thus I strive to improve the quality and meaningfulness of this book.

I want to know if you felt that a relevant topic was not discussed or it was
addressed only superficially. I also want to learn more about new types of
waste or tips to improve software efficiency. It goes without saying that all
errors should be reported.

Based on the feedback provided for the first edition, testing and artificial
intelligence have been written about. In addition, a few typographical
errors you noticed have been corrected. Thank you to everyone who
provided feedback!

If you want to improve the quality of my book or just write a positive
comment about it, please fill the short questionnaire found behind the
following link:

bit.ly/greencodefeedback

Thank you.

116

https://bit.ly/greencodefeedback

Exove and UpCloud Bring
Carbon Neutral Web
Services to the Market

Exove and UpCloud have decided to join
forces to provide responsibly implemented
cloud-based web services for locally or
internationally operating companies. The
partnership offers customers a reliable and
modern way to manage content and web
services cost-effectively and with high
quality while protecting the environment.

The partnership takes into account not
only customer needs but also the
environment and society. In terms of
responsibility, the focus is particularly on
minimising the carbon footprint and
environmental impact of web services.
Together, we have developed a CO2
calculator that allows for monitoring of
web and cloud services' emissions almost
in real-time. The most significant aspect is
the ability to measure and reduce the
carbon footprint of the web service across
the entire chain.

UpCloud's cloud services are available in 12
data centres worldwide, two of which are
located in Finland. The company is known
on the global cloud market for its high
availability and performance. UpCloud
offers customers a 99.99% service level
agreement and the best performance and
24/7 support in the market.

At UpCloud, we have
placed sustainable
development at the
core of our operations
and as part of this, we
also strive to neutralise
our carbon footprint in
the long term.

Exove has taken all of
this even further with
developing of web
services and we are
excited about this
evolving partnership.

Antti Vilpponen,
UpCloud

If you are interested,
please contact to
business@exove.com

Do You Want to Change
Your Organisation's Code to

Be Green?

Exove provides training and coaching for software developers and the
rest of organisation, as well as consulting for upper management in
implementing energy-efficient and carbon-neutral IT systems. We audit
systems and analyse a company's overall ICT architecture.

Training

We train application developers,
designers, and architects. The
training covers the basics of
green coding, identifying waste,
and rational optimisation of
systems.

Architecture Analysis

We analyse the overall ICT
architecture from an energy
efficiency perspective and create
a roadmap for improvements. We
also train ICT service providers as
needed.

Coaching

We help bring the change of
green coding to your
organisation by coaching and
guiding key players.

Interested? Get in touch:
business@exove.com

Consulting

We consult with company
management on specific issues
related to green code, assist in
developing energy efficiency, and
improve organisation's capability
regarding green IT.

Auditing

We audit a company's current
systems for energy efficiency and
provide suggestions for
improvements and an estimation
of savings.

